LZTR1
Leucine-zipper-like transcription regulator 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||
Symbols | LZTR1 ; BTBD29; LZTR-1; SWNTS2 | ||||||||||
External IDs | OMIM: 600574 MGI: 1914113 HomoloGene: 4925 GeneCards: LZTR1 Gene | ||||||||||
| |||||||||||
RNA expression pattern | |||||||||||
More reference expression data | |||||||||||
Orthologs | |||||||||||
Species | Human | Mouse | |||||||||
Entrez | 8216 | 66863 | |||||||||
Ensembl | ENSG00000099949 | ENSMUSG00000022761 | |||||||||
UniProt | Q8N653 | Q9CQ33 | |||||||||
RefSeq (mRNA) | NM_006767 | NM_025808 | |||||||||
RefSeq (protein) | NP_006758 | NP_080084 | |||||||||
Location (UCSC) |
Chr 22: 20.98 – 21 Mb |
Chr 16: 17.51 – 17.53 Mb | |||||||||
PubMed search | |||||||||||
Leucine-zipper-like transcriptional regulator 1 is a protein that in humans is encoded by the LZTR1 gene.[1][2][3]
This gene encodes a member of the BTB-kelch superfamily. Initially described as a putative transcriptional regulator based on weak homology to members of the basic leucine zipper-like family, the encoded protein subsequently has been shown to localize exclusively to the Golgi network where it may help stabilize the Golgi complex.[3]
Clinical significance
Deletion of this gene may be associated with DiGeorge syndrome.[3]
This gene has also been implicated in an autosomal dominant form of schwannomatosis.[4]
References
- ↑ Kurahashi H, Akagi K, Inazawa J, Ohta T, Niikawa N, Kayatani F, Sano T, Okada S, Nishisho I (Sep 1995). "Isolation and characterization of a novel gene deleted in DiGeorge syndrome". Hum Mol Genet 4 (4): 541–9. doi:10.1093/hmg/4.4.541. PMID 7633402.
- ↑ Nacak TG, Leptien K, Fellner D, Augustin HG, Kroll J (Feb 2006). "The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis". J Biol Chem 281 (8): 5065–71. doi:10.1074/jbc.M509073200. PMID 16356934.
- 1 2 3 "Entrez Gene: LZTR1 leucine-zipper-like transcription regulator 1".
- ↑ Piotrowski A, Xie J, Liu YF, Poplawski AB, Gomes AR, Madanecki P, Fu C, Crowley MR, Crossman DK, Armstrong L, Babovic-Vuksanovic D, Bergner A, Blakeley JO, Blumenthal AL, Daniels MS, Feit H, Gardner K, Hurst S, Kobelka C, Lee C, Nagy R, Rauen KA, Slopis JM, Suwannarat P, Westman JA, Zanko A, Korf BR, Messiaen LM (Dec 2013). "Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas". Nat Genet 46 (2): 182–7. doi:10.1038/ng.2855. PMID 24362817.
Further reading
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.
- Barrios-Rodiles M, Brown KR, Ozdamar B, et al. (2005). "High-throughput mapping of a dynamic signaling network in mammalian cells". Science 307 (5715): 1621–5. doi:10.1126/science.1105776. PMID 15761153.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Yu W, Andersson B, Worley KC, et al. (1997). "Large-Scale Concatenation cDNA Sequencing". Genome Res. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
- Andersson B, Wentland MA, Ricafrente JY, et al. (1996). "A "double adaptor" method for improved shotgun library construction". Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
This article is issued from Wikipedia - version of the Tuesday, September 01, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.