Lah number
![](../I/m/Lah_numbers.svg.png)
In mathematics, the Lah numbers, discovered by Ivo Lah in 1955,[1] are coefficients expressing rising factorials in terms of falling factorials.
Unsigned Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets. Lah numbers are related to Stirling numbers.
Unsigned Lah numbers (sequence A105278 in OEIS):
Signed Lah numbers (sequence A008297 in OEIS):
L(n, 1) is always n!; in the interpretation above, the only partition of {1, 2, 3} into 1 set can have its set ordered in 6 ways:
- {(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)} or {(3, 2, 1)}
L(3, 2) corresponds to the 6 partitions with two ordered parts:
- {(1), (2, 3)}, {(1), (3, 2)}, {(2), (1, 3)}, {(2), (3, 1)}, {(3), (1, 2)} or {(3), (2, 1)}
L(n, n) is always 1 since, e.g., partitioning {1, 2, 3} into 3 non-empty subsets results in subsets of length 1.
- {(1), (2), (3)}
Adapting the Karamata–Knuth notation for Stirling numbers, it has been proposed to use the following alternative notation for Lah numbers:
Rising and falling factorials
Let represent the rising factorial
and let
represent the falling factorial
.
Then and
For example,
Compare the third row of the table of values.
Identities and relations
where
are the Stirling numbers of the first kind and
are the Stirling numbers of the second kind, and with the conventions
and
if
.
Table of values
Below is a table of values for the Lah numbers:
![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | |||||||||||
2 | 2 | 1 | ||||||||||
3 | 6 | 6 | 1 | |||||||||
4 | 24 | 36 | 12 | 1 | ||||||||
5 | 120 | 240 | 120 | 20 | 1 | |||||||
6 | 720 | 1800 | 1200 | 300 | 30 | 1 | ||||||
7 | 5040 | 15120 | 12600 | 4200 | 630 | 42 | 1 | |||||
8 | 40320 | 141120 | 141120 | 58800 | 11760 | 1176 | 56 | 1 | ||||
9 | 362880 | 1451520 | 1693440 | 846720 | 211680 | 28224 | 2016 | 72 | 1 | |||
10 | 3628800 | 16329600 | 21772800 | 12700800 | 3810240 | 635040 | 60480 | 3240 | 90 | 1 | ||
11 | 39916800 | 199584000 | 299376000 | 199584000 | 69854400 | 13970880 | 1663200 | 11880 | 4950 | 110 | 1 | |
12 | 479001600 | 2634508800 | 4390848000 | 3293136000 | 1317254400 | 307359360 | 43908480 | 3920400 | 217800 | 7260 | 132 | 1 |
See also
References
- ↑ John Riordan, Introduction to Combinatorial Analysis, Princeton University Press (1958, reissue 1980) ISBN 978-0-691-02365-6 (reprinted again in 2002 by Dover Publications).