Lamb–Oseen vortex
In fluid dynamics, the Lamb–Oseen vortex models a line vortex that decays due to viscosity. This vortex is named after Horace Lamb and Carl Wilhelm Oseen.[1]

The mathematical model for the flow velocity in the circumferential
–direction in the Lamb–Oseen vortex is:
with
= radius,
= core radius of vortex,
= viscosity, and
= circulation contained in the vortex.
The radial velocity is equal to zero.
The associated vorticity distribution[2] in the vortex-filament-direction (here
) can be found with the curl:
An alternative definition is to use the peak tangential velocity of the vortex rather than the total circulation
where
is the radius at which
is
attained, and the number α = 1.25643, see Devenport et al.[3]
The pressure field simply ensures the vortex rotates in the circumferential direction, providing the centripetal force
where ρ is the constant density[4]
References
- ↑ Saffman, P. G.; Ablowitz, Mark J.; J. Hinch, E.; Ockendon, J. R.; Olver, Peter J. (1992). Vortex dynamics. Cambridge: Cambridge University Press. ISBN 0-521-47739-5. p. 253.
- ↑ Wu, J. Z.; Ma, H. Y.; Zhou M. D.; (2006). Vorticity and Vortex Dynamics. Berlin: Springer-Verlag. p. 262. ISBN 3-540-29027-3. p. 262.
- ↑ W.J. Devenport, M.C. Rife, S.I. Liapis and G.J. Follin (1996). "The structure and development of a wing-tip vortex". Journal of Fluid Mechanics 312: 67–106. Bibcode:1996JFM...312...67D. doi:10.1017/S0022112096001929.
- ↑ G.K. Batchelor (1967). An Introduction to Fluid Dynamics. Cambridge University Press.


![V_\theta\left( r \right) =
V_{\theta \max} \left( 1 + \frac{1}{2\alpha} \right)
\frac{r_\max}{r}
\left[ 1 - \exp \left( - \alpha \frac{r^2}{r_\max^2} \right)
\right],](../I/m/81c38524d052cf16bcd25866a00c5b8a.png)
