Laplace expansion (potential)

See also Laplace expansion of determinant.

In physics, the Laplace expansion of a 1/r - type potential is applied to expand Newton's gravitational potential or Coulomb's electrostatic potential. In quantum mechanical calculations on atoms the expansion is used in the evaluation of integrals of the interelectronic repulsion.

The Laplace expansion is in fact the expansion of the inverse distance between two points. Let the points have position vectors r and r', then the Laplace expansion is


\frac{1}{|\mathbf{r}-\mathbf{r}'|} = \sum_{\ell=0}^\infty  \frac{4\pi}{2\ell+1} 
\sum_{m=-\ell}^{\ell}
(-1)^m \frac{r_{{\scriptscriptstyle<}}^\ell }{r_{{\scriptscriptstyle>}}^{\ell+1} } Y^{-m}_\ell(\theta, \varphi) Y^{m}_\ell(\theta', \varphi').

Here r has the spherical polar coordinates (r, θ, φ) and r' has ( r', θ', φ'). Further r< is min(r, r') and r> is max(r, r'). The function Y^m_{\ell} is a normalized spherical harmonic function. The expansion takes a simpler form when written in terms of solid harmonics,


\frac{1}{|\mathbf{r}-\mathbf{r}'|} = \sum_{\ell=0}^\infty  
\sum_{m=-\ell}^{\ell}
(-1)^m  I^{-m}_\ell(\mathbf{r}) R^{m}_\ell(\mathbf{r}')\quad\hbox{with}\quad |\mathbf{r}| > |\mathbf{r}'|.

Derivation

One writes


\frac{1}{|\mathbf{r}-\mathbf{r}'|} = \frac{1}{\sqrt{r^2 + (r')^2 - 2 r r' \cos\gamma}} =   
\frac{1}{r\sqrt{1 + h^2 - 2 h \cos\gamma}} \quad\hbox{with}\quad h \equiv \frac{r'}{r} .

We find here the generating function of the Legendre polynomials P_\ell(\cos\gamma) :


\frac{1}{\sqrt{1 + h^2 - 2 h \cos\gamma}} = \sum_{\ell=0}^\infty h^\ell P_\ell(\cos\gamma).

Use of the spherical harmonic addition theorem


P_{\ell}(\cos \gamma) = \frac{4\pi}{2\ell + 1} \sum_{m=-\ell}^{\ell} 
(-1)^m Y^{-m}_{\ell}(\theta, \varphi)  Y^m_{\ell}(\theta', \varphi')

gives the desired result.

This article is issued from Wikipedia - version of the Saturday, May 24, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.