Machine learning

For the journal, see Machine Learning (journal).

Machine learning is a subfield of computer science[1] that evolved from the study of pattern recognition and computational learning theory in artificial intelligence.[1] In 1959, Arthur Samuel defined machine learning as a "Field of study that gives computers the ability to learn without being explicitly programmed".[2] Machine learning explores the study and construction of algorithms that can learn from and make predictions on data.[3] Such algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions expressed as outputs,[4]:2 rather than following strictly static program instructions.

Machine learning is closely related to and often overlaps with computational statistics; a discipline which also focuses in prediction-making through the use of computers. It has strong ties to mathematical optimization, which delivers methods, theory and application domains to the field. Machine learning is employed in a range of computing tasks where designing and programming explicit algorithms is infeasible. Example applications include spam filtering, optical character recognition (OCR),[5] search engines and computer vision. Machine learning is sometimes conflated with data mining,[6] where the latter sub-field focuses more on exploratory data analysis and is known as unsupervised learning.[4]:vii[7]

Within the field of data analytics, machine learning is a method used to devise complex models and algorithms that lend themselves to prediction. These analytical models allow researchers, data scientists, engineers, and analysts to "produce reliable, repeatable decisions and results" and uncover "hidden insights" through learning from historical relationships and trends in the data.[8]

Overview

Tom M. Mitchell provided a widely quoted, more formal definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E".[9] This definition is notable for its defining machine learning in fundamentally operational rather than cognitive terms, thus following Alan Turing's proposal in his paper "Computing Machinery and Intelligence" that the question "Can machines think?" be replaced with the question "Can machines do what we (as thinking entities) can do?"[10]

Types of problems and tasks

Machine learning tasks are typically classified into three broad categories, depending on the nature of the learning "signal" or "feedback" available to a learning system. These are[11]

Between supervised and unsupervised learning is semi-supervised learning, where the teacher gives an incomplete training signal: a training set with some (often many) of the target outputs missing. Transduction is a special case of this principle where the entire set of problem instances is known at learning time, except that part of the targets are missing.

A support vector machine is a classifier that divides its input space into two regions, separated by a linear boundary. Here, it has learned to distinguish black and white circles.

Among other categories of machine learning problems, learning to learn learns its own inductive bias based on previous experience. Developmental learning, elaborated for robot learning, generates its own sequences (also called curriculum) of learning situations to cumulatively acquire repertoires of novel skills through autonomous self-exploration and social interaction with human teachers, and using guidance mechanisms such as active learning, maturation, motor synergies, and imitation.

Another categorization of machine learning tasks arises when one considers the desired output of a machine-learned system:[4]:3

History and relationships to other fields

As a scientific endeavour, machine learning grew out of the quest for artificial intelligence. Already in the early days of AI as an academic discipline, some researchers were interested in having machines learn from data. They attempted to approach the problem with various symbolic methods, as well as what were then termed "neural networks"; these were mostly perceptrons and other models that were later found to be reinventions of the generalized linear models of statistics. Probabilistic reasoning was also employed, especially in automated medical diagnosis.[11]:488

However, an increasing emphasis on the logical, knowledge-based approach caused a rift between AI and machine learning. Probabilistic systems were plagued by theoretical and practical problems of data acquisition and representation.[11]:488 By 1980, expert systems had come to dominate AI, and statistics was out of favor.[12] Work on symbolic/knowledge-based learning did continue within AI, leading to inductive logic programming, but the more statistical line of research was now outside the field of AI proper, in pattern recognition and information retrieval.[11]:708–710; 755 Neural networks research had been abandoned by AI and computer science around the same time. This line, too, was continued outside the AI/CS field, as "connectionism", by researchers from other disciplines including Hopfield, Rumelhart and Hinton. Their main success came in the mid-1980s with the reinvention of backpropagation.[11]:25

Machine learning, reorganized as a separate field, started to flourish in the 1990s. The field changed its goal from achieving artificial intelligence to tackling solvable problems of a practical nature. It shifted focus away from the symbolic approaches it had inherited from AI, and toward methods and models borrowed from statistics and probability theory.[12] It also benefited from the increasing availability of digitized information, and the possibility to distribute that via the Internet.

Machine learning and data mining often employ the same methods and overlap significantly. They can be roughly distinguished as follows:

The two areas overlap in many ways: data mining uses many machine learning methods, but often with a slightly different goal in mind. On the other hand, machine learning also employs data mining methods as "unsupervised learning" or as a preprocessing step to improve learner accuracy. Much of the confusion between these two research communities (which do often have separate conferences and separate journals, ECML PKDD being a major exception) comes from the basic assumptions they work with: in machine learning, performance is usually evaluated with respect to the ability to reproduce known knowledge, while in Knowledge Discovery and Data Mining (KDD) the key task is the discovery of previously unknown knowledge. Evaluated with respect to known knowledge, an uninformed (unsupervised) method will easily be outperformed by supervised methods, while in a typical KDD task, supervised methods cannot be used due to the unavailability of training data.

Machine learning also has intimate ties to optimization: many learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions express the discrepancy between the predictions of the model being trained and the actual problem instances (for example, in classification, one wants to assign a label to instances, and models are trained to correctly predict the pre-assigned labels of a set examples). The difference between the two fields arises from the goal of generalization: while optimization algorithms can minimize the loss on a training set, machine learning is concerned with minimizing the loss on unseen samples.[13]

Relation to statistics

Machine learning and statistics are closely related fields. According to Michael I. Jordan, the ideas of machine learning, from methodological principles to theoretical tools, have had a long pre-history in statistics.[14] He also suggested the term data science as a placeholder to call the overall field.[14]

Leo Breiman distinguished two statistical modelling paradigms: data model and algorithmic model,[15] wherein 'algorithmic model' means more or less the machine learning algorithms like Random forest.

Some statisticians have adopted methods from machine learning, leading to a combined field that they call statistical learning.[16]

Theory

A core objective of a learner is to generalize from its experience.[17][18] Generalization in this context is the ability of a learning machine to perform accurately on new, unseen examples/tasks after having experienced a learning data set. The training examples come from some generally unknown probability distribution (considered representative of the space of occurrences) and the learner has to build a general model about this space that enables it to produce sufficiently accurate predictions in new cases.

The computational analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory. Because training sets are finite and the future is uncertain, learning theory usually does not yield guarantees of the performance of algorithms. Instead, probabilistic bounds on the performance are quite common. The bias–variance decomposition is one way to quantify generalization error.

How well a model trained with existing examples predicts the output for unknown instances is called generalization. For best generalization, complexity of the hypothesis should match the complexity of the function underlying the data. If the hypothesis is less complex than the function, we've underfitted. Then, we increase the complexity, the training error decreases. But if our hypothesis is too complex, we've overfitted. After then, we should find the hypothesis that has the minimum training error.[19]

In addition to performance bounds, computational learning theorists study the time complexity and feasibility of learning. In computational learning theory, a computation is considered feasible if it can be done in polynomial time. There are two kinds of time complexity results. Positive results show that a certain class of functions can be learned in polynomial time. Negative results show that certain classes cannot be learned in polynomial time.

There are many similarities between machine learning theory and statistical inference, although they use different terms.

Approaches

Decision tree learning

Decision tree learning uses a decision tree as a predictive model, which maps observations about an item to conclusions about the item's target value.

Association rule learning

Association rule learning is a method for discovering interesting relations between variables in large databases.

Artificial neural networks

An artificial neural network (ANN) learning algorithm, usually called "neural network" (NN), is a learning algorithm that is inspired by the structure and functional aspects of biological neural networks. Computations are structured in terms of an interconnected group of artificial neurons, processing information using a connectionist approach to computation. Modern neural networks are non-linear statistical data modeling tools. They are usually used to model complex relationships between inputs and outputs, to find patterns in data, or to capture the statistical structure in an unknown joint probability distribution between observed variables.

Deep Learning

Main article: Deep learning

Falling hardware prices and the development of GPUs for personal use in the last few years have contributed to the development of the concept of Deep learning which consists of multiple hidden layers in an artificial neural network. This approach tries to model the way the human brain processes light and sound into vision and hearing. Some successful applications of deep learning are computer vision[20] and speech recognition.[21]

Inductive logic programming

Inductive logic programming (ILP) is an approach to rule learning using logic programming as a uniform representation for input examples, background knowledge, and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesized logic program that entails all positive and no negative examples. Inductive programming is a related field that considers any kind of programming languages for representing hypotheses (and not only logic programming), such as functional programs.

Support vector machines

Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other.

Clustering

Main article: Cluster analysis

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that observations within the same cluster are similar according to some predesignated criterion or criteria, while observations drawn from different clusters are dissimilar. Different clustering techniques make different assumptions on the structure of the data, often defined by some similarity metric and evaluated for example by internal compactness (similarity between members of the same cluster) and separation between different clusters. Other methods are based on estimated density and graph connectivity. Clustering is a method of unsupervised learning, and a common technique for statistical data analysis.

Bayesian networks

Main article: Bayesian network

A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical model that represents a set of random variables and their conditional independencies via a directed acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms exist that perform inference and learning.

Reinforcement learning

Reinforcement learning is concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. Reinforcement learning algorithms attempt to find a policy that maps states of the world to the actions the agent ought to take in those states. Reinforcement learning differs from the supervised learning problem in that correct input/output pairs are never presented, nor sub-optimal actions explicitly corrected.

Representation learning

Several learning algorithms, mostly unsupervised learning algorithms, aim at discovering better representations of the inputs provided during training. Classical examples include principal components analysis and cluster analysis. Representation learning algorithms often attempt to preserve the information in their input but transform it in a way that makes it useful, often as a pre-processing step before performing classification or predictions, allowing to reconstruct the inputs coming from the unknown data generating distribution, while not being necessarily faithful for configurations that are implausible under that distribution.

Manifold learning algorithms attempt to do so under the constraint that the learned representation is low-dimensional. Sparse coding algorithms attempt to do so under the constraint that the learned representation is sparse (has many zeros). Multilinear subspace learning algorithms aim to learn low-dimensional representations directly from tensor representations for multidimensional data, without reshaping them into (high-dimensional) vectors.[22] Deep learning algorithms discover multiple levels of representation, or a hierarchy of features, with higher-level, more abstract features defined in terms of (or generating) lower-level features. It has been argued that an intelligent machine is one that learns a representation that disentangles the underlying factors of variation that explain the observed data.[23]

Similarity and metric learning

Main article: Similarity learning

In this problem, the learning machine is given pairs of examples that are considered similar and pairs of less similar objects. It then needs to learn a similarity function (or a distance metric function) that can predict if new objects are similar. It is sometimes used in Recommendation systems.

Sparse dictionary learning

In this method, a datum is represented as a linear combination of basis functions, and the coefficients are assumed to be sparse. Let x be a d-dimensional datum, D be a d by n matrix, where each column of D represents a basis function. r is the coefficient to represent x using D. Mathematically, sparse dictionary learning means solving x \approx D r where r is sparse. Generally speaking, n is assumed to be larger than d to allow the freedom for a sparse representation.

Learning a dictionary along with sparse representations is strongly NP-hard and also difficult to solve approximately.[24] A popular heuristic method for sparse dictionary learning is K-SVD.

Sparse dictionary learning has been applied in several contexts. In classification, the problem is to determine which classes a previously unseen datum belongs to. Suppose a dictionary for each class has already been built. Then a new datum is associated with the class such that it's best sparsely represented by the corresponding dictionary. Sparse dictionary learning has also been applied in image de-noising. The key idea is that a clean image patch can be sparsely represented by an image dictionary, but the noise cannot.[25]

Genetic algorithms

Main article: Genetic algorithm

A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection, and uses methods such as mutation and crossover to generate new genotype in the hope of finding good solutions to a given problem. In machine learning, genetic algorithms found some uses in the 1980s and 1990s.[26][27] Vice versa, machine learning techniques have been used to improve the performance of genetic and evolutionary algorithms.[28]

Applications

Applications for machine learning include:

In 2006, the online movie company Netflix held the first "Netflix Prize" competition to find a program to better predict user preferences and improve the accuracy on its existing Cinematch movie recommendation algorithm by at least 10%. A joint team made up of researchers from AT&T Labs-Research in collaboration with the teams Big Chaos and Pragmatic Theory built an ensemble model to win the Grand Prize in 2009 for $1 million.[31] Shortly after the prize was awarded, Netflix realized that viewers' ratings were not the best indicators of their viewing patterns ("everything is a recommendation") and they changed their recommendation engine accordingly.[32]

In 2010 The Wall Street Journal wrote about money management firm Rebellion Research's use of machine learning to predict economic movements. The article describes Rebellion Research's prediction of the financial crisis and economic recovery.[33]

In 2014 it has been reported that a machine learning algorithm has been applied in Art History to study fine art paintings, and that it may have revealed previously unrecognized influences between artists.[34]

Ethics

Machine Learning poses a host of ethical questions. Systems which are trained on datasets collected with biases may exhibit these biases upon use, thus digitizing cultural prejudices such as institutional racism and classism. [35] Responsible collection of data thus is a critical part of machine learning. See Machine ethics for additional information.

Software

Software suites containing a variety of machine learning algorithms include the following:

Open-source software

Commercial software with open-source editions

Commercial software

Journals

Conferences

See also

References

  1. 1 2 http://www.britannica.com/EBchecked/topic/1116194/machine-learning  This tertiary source reuses information from other sources but does not name them.
  2. Phil Simon (March 18, 2013). Too Big to Ignore: The Business Case for Big Data. Wiley. p. 89. ISBN 978-1-118-63817-0.
  3. Ron Kohavi; Foster Provost (1998). "Glossary of terms". Machine Learning 30: 271–274.
  4. 1 2 3 4 Machine learning and pattern recognition "can be viewed as two facets of the same field."
  5. Wernick, Yang, Brankov, Yourganov and Strother, Machine Learning in Medical Imaging, IEEE Signal Processing Magazine, vol. 27, no. 4, July 2010, pp. 25-38
  6. Mannila, Heikki (1996). Data mining: machine learning, statistics, and databases. Int'l Conf. Scientific and Statistical Database Management. IEEE Computer Society.
  7. Friedman, Jerome H. (1998). "Data Mining and Statistics: What's the connection?". Computing Science and Statistics 29 (1): 3–9.
  8. "Machine Learning: What it is and why it matters". www.sas.com. Retrieved 2016-03-29.
  9. Mitchell, T. (1997). Machine Learning, McGraw Hill. ISBN 0-07-042807-7, p.2.
  10. Harnad, Stevan (2008), "The Annotation Game: On Turing (1950) on Computing, Machinery, and Intelligence", in Epstein, Robert; Peters, Grace, The Turing Test Sourcebook: Philosophical and Methodological Issues in the Quest for the Thinking Computer, Kluwer
  11. 1 2 3 4 5 Russell, Stuart; Norvig, Peter (2003) [1995]. Artificial Intelligence: A Modern Approach (2nd ed.). Prentice Hall. ISBN 978-0137903955.
  12. 1 2 Langley, Pat (2011). "The changing science of machine learning". Machine Learning 82 (3): 275–279. doi:10.1007/s10994-011-5242-y.
  13. Le Roux, Nicolas; Bengio, Yoshua; Fitzgibbon, Andrew (2012). "Improving First and Second-Order Methods by Modeling Uncertainty". In Sra, Suvrit; Nowozin, Sebastian; Wright, Stephen J. Optimization for Machine Learning. MIT Press. p. 404.
  14. 1 2 MI Jordan (2014-09-10). "statistics and machine learning". reddit. Retrieved 2014-10-01.
  15. Cornell University Library. "Breiman  : Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)". Retrieved 8 August 2015.
  16. Gareth James; Daniela Witten; Trevor Hastie; Robert Tibshirani (2013). An Introduction to Statistical Learning. Springer. p. vii.
  17. Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer, ISBN 0-387-31073-8
  18. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar (2012) Foundations of Machine Learning, MIT Press ISBN 978-0-262-01825-8.
  19. Ethem Alpaydin. "Introduction to Machine Learning" The MIT Press, 2010.
  20. Viebke, Andre; Pllana, Sabri. "The Potential of the Intel Xeon Phi for Supervised Deep Learning" (PDF). The 17th IEEE International Conference on High Performance Computing and Communications (HPCC 2015), Aug. 24 - 26, 2015, New York, USA. IEEE. Retrieved 1 April 2016.
  21. Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations" Proceedings of the 26th Annual International Conference on Machine Learning, 2009.
  22. Lu, Haiping; Plataniotis, K.N.; Venetsanopoulos, A.N. (2011). "A Survey of Multilinear Subspace Learning for Tensor Data" (PDF). Pattern Recognition 44 (7): 1540–1551. doi:10.1016/j.patcog.2011.01.004.
  23. Yoshua Bengio (2009). Learning Deep Architectures for AI. Now Publishers Inc. pp. 1–3. ISBN 978-1-60198-294-0.
  24. A. M. Tillmann, "On the Computational Intractability of Exact and Approximate Dictionary Learning", IEEE Signal Processing Letters 22(1), 2015: 45–49.
  25. Aharon, M, M Elad, and A Bruckstein. 2006. "K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation." Signal Processing, IEEE Transactions on 54 (11): 4311-4322
  26. Goldberg, David E.; Holland, John H. (1988). "Genetic algorithms and machine learning". Machine Learning 3 (2): 95–99. doi:10.1007/bf00113892.
  27. Michie, D.; Spiegelhalter, D. J.; Taylor, C. C. (1994). Machine Learning, Neural and Statistical Classification. Ellis Horwood.
  28. Zhang, Jun; Zhan, Zhi-hui; Lin, Ying; Chen, Ni; Gong, Yue-jiao; Zhong, Jing-hui; Chung, Henry S.H.; Li, Yun; Shi, Yu-hui (2011). "Evolutionary Computation Meets Machine Learning: A Survey" (PDF). Computational Intelligence Magazine (IEEE) 6 (4): 68–75. doi:10.1109/mci.2011.942584.
  29. Tesauro, Gerald (March 1995). "Temporal Difference Learning and TD-Gammon". Communications of the ACM 38 (3): 58–68. doi:10.1145/203330.203343.
  30. Daniel Jurafsky and James H. Martin (2009). Speech and Language Processing. Pearson Education. pp. 207 ff.
  31. "BelKor Home Page" research.att.com
  32. "The Netflix Tech Blog: Netflix Recommendations: Beyond the 5 stars (Part 1)". Retrieved 8 August 2015.
  33. Scott Patterson (13 July 2010). "'Artificial Intelligence' Gains Fans Among Investors - WSJ". WSJ. Retrieved 8 August 2015.
  34. When A Machine Learning Algorithm Studied Fine Art Paintings, It Saw Things Art Historians Had Never Noticed, The Physics at ArXiv blog
  35. Bostrom, Nick (2011). "The Ethics of Artificial Intelligence" (PDF). Retrieved 11 April 2016.

Further reading

External links

This article is issued from Wikipedia - version of the Thursday, May 05, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.