Ventricular assist device

Ventricular assist device
Intervention

A left ventricular assist device (LVAD) pumping blood from the left ventricle to the aorta, connected to an externally worn control unit and battery pack.
MedlinePlus 007268

A ventricular assist device (VAD) is an electromechanical circulatory device that is used to partially or completely replace the function of a failing heart. The function of VADs differs from that of artificial cardiac pacemakers. Some VADs are intended for short term use, typically for patients recovering from heart attacks or heart surgery, while others are intended for long-term use (months to years and in some cases for life), typically for patients suffering from advanced congestive heart failure.

VADs are distinct from artificial hearts, which are designed to completely take over cardiac function and generally require the removal of the patient's heart. VADs are designed to assist either the right (RVAD) or left (LVAD) ventricle, or both at once (BiVAD). The type that is used depends primarily on the underlying heart disease and the pulmonary arterial resistance that determines the load on the right ventricle.

LVADs are most commonly used, but when pulmonary arterial resistance is high, right ventricular assistance may become necessary. Long term VADs are normally used to keep patients alive with a good quality of life while they wait for a heart transplantation (known as a "bridge to transplantation"). However, LVADs are sometimes used as destination therapy, meaning they will never undergo heart transplant, and sometimes as a bridge to recovery.[1][2]

In the last few years, VADs have improved significantly in terms of providing survival and quality of life among recipients.[3]

Design

Close-up illustration of typical left ventricular assist device (LVAD)

Pumps

The pumps used in VADs can be divided into two main categories – pulsatile pumps,[4] that mimic the natural pulsing action of the heart, and continuous flow pumps.[5] Pulsatile VADs use positive displacement pumps. In some of these pumps, the volume occupied by blood varies during the pumping cycle, and if the pump is contained inside the body then a vent tube to the outside air is required.

Continuous flow VADs are smaller and have proven to be more durable than pulsatile VADs.[6] They normally use either a centrifugal pump or an axial flow pump. Both types have a central rotor containing permanent magnets. Controlled electric currents running through coils contained in the pump housing apply forces to the magnets, which in turn cause the rotors to spin. In the centrifugal pumps, the rotors are shaped to accelerate the blood circumferentially and thereby cause it to move toward the outer rim of the pump, whereas in the axial flow pumps the rotors are more or less cylindrical with blades that are helical, causing the blood to be accelerated in the direction of the rotor's axis.[7]

An important issue with continuous flow pumps is the method used to suspend the rotor. Early versions used solid bearings; however, newer pumps, some of which are approved for use in the EU, use either electromagnetic suspension ("maglev")[8][9][10][11] or hydrodynamic suspension. These pumps contain only one moving part (the rotor).

History

1966 DeBakey ventricular assist device.[12]

The first successful implantation of a left ventricular assist device was completed in 1966 by Dr. Michael E. DeBakey to a 37-year-old woman. A paracorporeal (external) circuit was able to provide mechanical support for 10 days after the surgery.[13] The first successful long-term implantation of an artificial LVAD was conducted in 1988 by Dr. William F. Bernhard of Boston Children's Hospital Medical Center and Thermedics, Inc of Woburn, MA under a National Institutes of Health (NIH) research contract which developed Heart-mate, an electronically controlled assist device. This was funded by a three year $6.2 million contract to Thermedics and Children's Hospital, Boston MA from the National Heart and Lung and Blood Institute, a program of NIH.[14] The early VADs emulated the heart by using a "pulsatile" action where blood is alternately sucked into the pump from the left ventricle then forced out into the aorta. Devices of this kind include the HeartMate IP LVAS, which was approved for use in the US by the Food and Drug Administration (FDA) in October 1994. These devices are commonly referred to as first generation VADs.

More recent work has concentrated on continuous flow pumps, which can be roughly categorized as either centrifugal pumps or axial flow impeller driven pumps. These pumps have the advantage of greater simplicity resulting in smaller size and greater reliability. These devices are referred to as second generation VADs. A side effect is that the user will not have a pulse, or that the pulse intensity will be seriously reduced.

Third generation VADs suspend the impeller in the pump using either hydrodynamic or electromagnetic suspension, thus removing the need for bearings and reducing the number of moving parts to one.

Another technology undergoing clinical trials is the use of trans cutaneous induction to power and control the device rather than using percutaneous cables. Apart from the obvious cosmetic advantage this reduces the risk of infection and the consequent need to take preventative action. A pulsatile pump using this technology has CE Mark approval and is in clinical trials for US FDA approval.

A very different approach in the early stages of development is the use of an inflatable cuff around the aorta. Inflating the cuff contracts the aorta and deflating the cuff allows the aorta to expand – in effect the aorta becomes a second left ventricle. A proposed refinement is to use the patient's skeletal muscle, driven by a pacemaker, to power this device which would make it truly self-contained. However a similar operation (cardiomyoplasty) was tried in the 1990s with disappointing results. In any case, it has substantial potential advantages in avoiding the need to operate on the heart itself and in avoiding any contact between blood and the device. This approach involves a return to a pulsatile flow.

Peter Houghton was the longest surviving recipient of a VAD for permanent use. He received an experimental Jarvik 2000 LVAD in June 2000. Since then, he completed a 91-mile charity walk, published two books, lectured widely, hiked in the Swiss Alps and the American West, flew in an ultra-light aircraft, and traveled extensively around the world. He died of acute renal failure in 2007 at the age of 69.[15][16]

Studies and outcomes

Recent developments

The majority of VADs on the market today are somewhat bulky. The smallest device approved by the FDA, the HeartMate II, weighs about 1 pound (0.45 kg) and measures 3 inches (7.6 cm). This has proven particularly important for women and children, for whom alternatives would have been too large.[28]

One device gained CE Mark approval for use in the EU and began clinical trials in the US (VentrAssist). As of June 2007 these pumps had been implanted in over 100 patients. In 2009, Ventracor was placed into the hands of Administrators due to financial problems and was later that year liquidated. No other companies purchased the technology, so as a result the VentrAssist device was essentially defunct. Around 30–50 patients worldwide remain supported on VentrAssist devices as of January 2010.

The Heartware HVAD works similarly to the VentrAssist – albeit much smaller and not requiring an abdominal pocket to be implanted into. The device has obtained CE Mark in Europe, and FDA approval in the U.S. Recently, it was shown that the Heartware HVAD can be implanted through limited access without sternotomy.[29]

In a small number of cases left ventricular assist devices, combined with drug therapy, have enabled the heart to recover sufficiently for the device to be able to be removed (explanted).[1][2]

HeartMate II LVAD pivotal study

A series of studies involving the use of the HeartMate II LVAD have proven useful in establishing the viability and risks of using LVADs for bridge-to-transplantation and destination therapy.

HARPS

The Harefield Recovery Protocol Study (HARPS) is a clinical trial to evaluate whether advanced heart failure patients requiring VAD support can recover sufficient myocardial function to allow device removal (known as explantation). HARPS combines an LVAD (the HeartMate XVE) with conventional oral heart failure medications, followed by the novel β2 agonist clenbuterol. This opens the possibility that some advanced heart failure patients may forgo heart transplantation.[38]

To date, 73% (11 of 15) of patients who underwent the combination therapy regimen demonstrated sufficient recovery to allow explantation and avoid heart transplantation; freedom from recurrent heart failure in surviving patients was 100% and 89% at one and four years after explantation, respectively; average ejection fraction was 64% at 59 months after explantation – all patients were NYHA Class I; and no significant adverse effects were reported with clenbuterol therapy.

REMATCH

The REMATCH (Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure) clinical trial began in May 1998 and ran through July 2001 in 20 cardiac transplant centers around the USA. The trial was designed to compare long-term implantation of left ventricular assist devices with optimal medical management for patients with end-stage heart failure who require, but do not qualify to receive cardiac transplantation. As a result of the clinical outcomes, the device received FDA approval for both indications, in 2001 and 2003, respectively.[39]

The trial demonstrated an 81% improvement in two-year survival among patients receiving HeartMate XVE compared to optimal medical management. In addition, a destination therapy study following the REMATCH trial demonstrated an additional 17% improvement (61% vs. 52%) in one-year survival of patients that were implanted with a VAD (HeartMate XVE), with an implication for the appropriate selection of candidates and timing of VAD implantation.

A test carried out in 2001 by Dr. Eric A. Rose and REMATCH study group with patients with congestive heart failure that were ineligible for a transplant showed a survival at two years of 23% for those implanted with an LVAD compared with 8% for those who were treated with drugs. The two major complications of VAD implantation were infection and mechanical failure (see below).

According to a retrospective cohort study comparing patients treated with a left ventricular assist device versus inotrope therapy while awaiting heart transplantation, the group treated with LVAD had improved clinical and metabolic function at the time of transplant with better blood pressure, sodium, blood urea nitrogen, and creatinine. After transplant, 57.7% of the inotrope group had renal failure versus 16.6% in the LVAD group; 31.6% of the inotrope group had right heart failure versus 5.6% in the LVAD group; and event-free survival was 15.8% in the inotrope group versus 55.6% in the LVAD group.[40]

Complications and side effects

Bleeding is the most common postoperative early complication after implantation or explantation of LVADs, necessitating reoperation in up to 60% of recipients.[41][42] The implications of massive blood transfusions are great and include infection, pulmonary insufficiency, increased costs, right heart failure, allosensitization, and viral transmission, some of which can prove fatal or preclude transplantation.[42] When bleeding occurs, it impacts the one year Kaplan-Meier mortality.[41] In addition to complexity of the patient population and the complexity of these procedures contributing to bleeding, the devices themselves may contribute to the severe coagulopathy that can ensue when these devices are implanted.[43] Critical in the management of bleeding in the early hours after implantation or explantation is to adequately evacuate the post-surgical blood from around the heart and lungs to prevent retained blood from contributing to the need for reoperation to wash out clot that can compress the device features and contribute to post operative shock. Preventing chest tube clogging during this period is critical to recovery.[42]

Because the devices generally result in blood flowing over a non-biologic surface, predisposing the blood to clotting, there is need for anticoagulation measures. One device, the HeartMate XVE, is designed with a biologic surface derived from fibrin and does not require long term anticoagulation (except aspirin); unfortunately, this biologic surface may also predispose the patient to infection through selective reduction of certain types of leukocytes.[44]

New VAD designs which are now approved for use in the European Community and are undergoing trials for FDA approval have all but eliminated mechanical failure.

VAD-related infection can be caused by a large number of different organisms:[45]

Treatment of VAD-related infection is exceedingly difficult and many patients die of infection despite optimal treatment. Initial treatment should be with broad spectrum antibiotics, but every effort must be made to obtain appropriate samples for culture. A final decision regarding antibiotic therapy must be based on the results of microbiogical cultures.

Other problems include immunosuppression, clotting with resultant stroke, and bleeding secondary to anticoagulation. Some of the polyurethane components used in the devices cause the deletion of a subset of immune cells when blood comes in contact with them. This predisposes the patient to fungal and some viral infections necessitating appropriate prophylactic therapy.[46]

Considering the multitude of risks and lifestyle modifications associated with ventricular assist device implant,[47] it is important for prospective patients to be informed prior to decision making.[48] In addition to physician consult, various Internet-based patient directed resources are available to assist in patient education.[49][50]

List of implantable VAD devices

This is a partial list and may never be complete
Referenced additions are welcome

Device Manufacturer Type Approval Status as of July 2010
HeartAssist5 ReliantHeart Continuous flow driven by an axial flow rotor. Approved for use in the European Union. The child version is approved by the FDA for use in children in USA. Undergoing clinical trials in USA for FDA approval.
Novacor World Heart Pulsatile. Was approved for use in North America, European Union and Japan. Now defunct and no longer supported by the manufacturer. (Heartware completed acquisition August 2012)
HeartMate XVE Thoratec Pulsatile FDA approval for BTT in 2001 and DT in 2003. CE Mark Authorized. Rarely used anymore due to reliability concerns.
HeartMate II Thoratec Rotor driven continuous axial flow, ball and cup bearings. Approved for use in North America and EU. CE Mark Authorized. FDA approval for BTT in April 2008. Recently approved by FDA in the US for Destination Therapy (as at January 2010).
HeartMate III Thoratec Continuous flow driven by a magnetically suspended axial flow rotor. Pivotal trials for HeartMate III started in 2014.
Incor Berlin Heart Continuous flow driven by a magnetically suspended axial flow rotor. Approved for use in European Union. Used on humanitarian approvals on case by case basis in the US. Entered clinical trials in the US in 2009.
Excor Pediatric Berlin Heart External membrane pump device designed for children. Approved for use in European Union. FDA granted Humanitarian Device Exemption for US in December 2011.
Jarvik 2000 Jarvik Heart Continuous flow, axial rotor supported by ceramic bearings. Currently used in the United States as a bridge to heart transplant under an FDA-approved clinical investigation. In Europe, the Jarvik 2000 has earned CE Mark certification for both bridge-to-transplant and lifetime use. Child version currently being developed.
MicroMed DeBakey VAD MicroMed Continuous flow driven by axial rotor supported by ceramic bearings. Approved for use in the European Union. The child version is approved by the FDA for use in children in USA. Undergoing clinical trials in USA for FDA approval.
VentrAssist Ventracor[51] Continuous flow driven by a hydrodynamically suspended centrifugal rotor. Approved for use in European Union and Australia. Company declared bankrupt while clinical trials for FDA approval were underway in 2009. Company now dissolved and intellectual property sold to Thoratec.
MTIHeartLVAD www.mitiheart.com Continuous flow driven by a magnetically suspended centrifugal rotor. Currently in animal testing, recently completed successful 60 day calf implant.
C-Pulse Sunshine Heart Pulsatile, driven by an inflatable cuff around the aorta. Currently in clinical trials in the US and Australia.
HVAD HeartWare Miniature "third generation" device with centrifugal blood path and hydromagnetically suspended rotor that may be placed in the pericardial space. Obtained CE Mark for distribution in Europe, January 2009. Obtained FDA approval in the U.S., November 2012. Initiated US BTT trial in October 2008 (completed February 2010) and US DT trial in August 2010 (enrollment completed May 2012).
MVAD HeartWare HeartWare's MVAD Pump is a development-stage miniature ventricular assist device, approximately one-third the size of HeartWare's HVAD pump. HeartWare Completed GLP Studies (September 2011).
DuraHeart Terumo Magnetically levitated centrifugal pump. CE approved, US FDA trials underway as at January 2010.
Thoratec PVAD (Paracorporeal Ventricular Assist Device) Thoratec Pulsatile system includes three major components: Blood pump, cannulae and pneumatic driver (dual drive console or portable VAD driver). CE Mark Authorized. Received FDA approval for BTT in 1995 and for post-cardiotomy recovery (open heart surgery) in 1998.
IVAD – Implantable Ventricular Assist Device Thoratec Pulsatile system includes three major components: Blood pump, cannulae and pneumatic driver (dual drive console or portable VAD driver). CE Mark Authorized. Received FDA approval for BTT in 2004. Authorized only for internal implant, not for paracorporeal implant due to reliability issues.

See also

References

  1. 1 2 Birks, E. J.; Tansley, P. D.; Hardy, J.; George, R. S.; Bowles, C. T.; Burke, M.; Banner, N. R.; Khaghani, A.; Yacoub, M. H. (2006). "Left Ventricular Assist Device and Drug Therapy for the Reversal of Heart Failure". New England Journal of Medicine 355 (18): 1873–1884. doi:10.1056/NEJMoa053063. PMID 17079761.
  2. 1 2 First VentrAssist Heart Recovery Featured on National TV. ventracor.com, 19 October 2006.
  3. Osaki, Saturo; Edwards, Velez, Johnson, et al (August 2008). "Improved survival in patients with ventricular assist device therapy: the University of Wisconsin experience". European Journal of Cardio-Thoracic Surgery 34 (2): 281–288. doi:10.1016/j.ejcts.2008.04.023. PMID 18513988. Cite uses deprecated parameter |coauthors= (help)
  4. Fajdek, Bartłomiej; Krzysztof, Janiszowski (2–5 September 2014). "Automatic control system for ventricular assist device". Methods and Models in Automation and Robotics (MMAR), 2014 19th International Conference On: 874–879. doi:10.1109/MMAR.2014.6957472.
  5. Schulman, A. R.; Martens, T. P.; Christos, P. J.; Russo, M. J.; Comas, G. M.; Cheema, F. H.; Naseem, T. M.; Wang, R.; Idrissi, K. A.; Bailey, S. H.; Naka, Y. (2007). "Comparisons of infection complications between continuous flow and pulsatile flow left ventricular assist devices". The Journal of Thoracic and Cardiovascular Surgery 133 (3): 841–842. doi:10.1016/j.jtcvs.2006.09.083. PMID 17320612.
  6. Slaughter, M. S.; Pagani, F. D.; Rogers, J. G.; Miller, L. W.; Sun, B.; Russell, S. D.; Starling, R. C.; Chen, L.; Boyle, A. J.; Chillcott, S.; Adamson, R. M.; Blood, M. S.; Camacho, M. T.; Idrissi, K. A.; Petty, M.; Sobieski, M.; Wright, S.; Myers, T. J.; Farrar, D. J.; HeartMate II Clinical Investigators (2010). "Clinical management of continuous-flow left ventricular assist devices in advanced heart failure". The Journal of Heart and Lung Transplantation 29 (4): S1–39. doi:10.1016/j.healun.2010.01.011. PMID 20181499.
  7. Fukamachi, Kiyo; Smedira, Nicholas (August 2005). "Smaller, Safer, Totally Implantable LVADs: Fact or Fantasy?". American College of Cardiology Current Journal Review 14 (8): 40–42. doi:10.1016/j.accreview.2005.06.001.
  8. Frank Smart."Magnetic levitation heart pump implanted in first U.S. patient"."Cardiology Today". October 2008.
  9. Pai, C. N.; Shinshi, T.; Asama, J.; Takatani, S.; Shimokohbe, A. (2008). "Development of a Compact Maglev Centrifugal Blood Pump Enclosed in a Titanium Housing". Journal of Advanced Mechanical Design, Systems, and Manufacturing 2 (3): 343. doi:10.1299/jamdsm.2.343.
  10. Long, Geoff "High Efficiency, High Power Density Electric Motors", cafefoundation.org, shows photos of "implantable maglev blood pumps".
  11. Hoshi, H.; Shinshi, T.; Takatani, S. (2006). "Third-generation Blood Pumps with Mechanical Noncontact Magnetic Bearings". Artificial Organs 30 (5): 324–338. doi:10.1111/j.1525-1594.2006.00222.x. PMID 16683949.
  12. "Dr. Denton Cooley and Dr. Michael E. DeBakey: Rock stars of Houston medicine". Houston Chronicle. 3 April 2014. Retrieved 7 March 2015.
  13. Kirklin, JK; Naftel, DC (September 2008). "Mechanical circulatory support: registering a therapy in evolution.". Circulation. Heart failure 1 (3): 200–5. doi:10.1161/circheartfailure.108.782599. PMID 19808290.
  14. Today, Children's (19 March 1988). "Heart Pump Progress Announced - A promising step in artificial heart technology". Children's Today (March): 1,5.
  15. "The First Lifetime-Use Patient". Jarvik Heart. Retrieved 4 August 2009.
  16. Patient Sets World Record for Living with Heart Assist Device. texasheart.org, 6 July 2007.
  17. Maugh, Thomas (14 July 2009). "Transplant shows heart's reparative capabilities". Los Angeles Times. Retrieved 15 September 2009.
  18. Pagani, F. D.; Miller, L. W.; Russell, S. D.; Aaronson, K. D.; John, R.; Boyle, A. J.; Conte, J. V.; Bogaev, R. C.; MacGillivray, T. E.; Naka, Y.; Mancini, D.; Massey, H. T.; Chen, L.; Klodell, C. T.; Aranda, J. M.; Moazami, N.; Ewald, G. A.; Farrar, D. J.; Frazier, O. H.; Heartmate Ii, I. (2009). "Extended Mechanical Circulatory Support with a Continuous-Flow Rotary Left Ventricular Assist Device". Journal of the American College of Cardiology 54 (4): 312–321. doi:10.1016/j.jacc.2009.03.055. PMID 19608028.
  19. "Heidelberg Cardiac Surgeons implant world’s first new DeBakey Heart Assist Device". Insciences. 17 August 2009. Retrieved 15 September 2009.
  20. Quinn, Dale (4 August 2009). "VA study: heart-healing patch". Arizona Daily star. Retrieved 15 September 2009.
  21. "A Study of Anginera In Patients Undergoing Coronary Artery Bypass Graft (CABG) Surgery". Clinicaltrials.gov (U.S. National Institutes of Health). 27 March 2009. Retrieved 15 September 2009.
  22. Hunter, Tim (13 September 2009). "Meet the Kiwi bionic man". Manawatu Standard. Retrieved 15 September 2009.
  23. "$2.8 Million Grant Renewed for Development of "Pulse-Less" Total Artificial Heart". Houston: BusinessWire. 6 August 2009. Retrieved 15 September 2009.
  24. "Evaluation of the HeartWare LVAD System for the Treatment of Advanced Heart Failure". Baltimore: Johns Hopkins Medical. May 2009. Retrieved 15 September 2009.
  25. "HeartWare International Surpasses 50 Implants in the US". Bio-medicine. 20 August 2009. Retrieved 15 September 2009.
  26. "Thoratec Announces First HeartMate III™ Human Implant And Start Of CE Mark Trial". 20 August 2009. Retrieved 15 September 2009.
  27. "Human Ventricular Unloading Induces Cardiomyocyte Proliferation". J Am Coll Cardiol 65 (9): 892–900. 2015. doi:10.1016/j.jacc.2014.12.027.
  28. Bogaev, Roberta; Chen, Russell, Rogers, et al (2007). "An Emerging Option for Women with Advanced Heart Failure: Results of the HeartMate II Continuous Flow Left Ventricular Assist Device Bridge to Transplant Trial". Medical Aspects of End-Stage Heart Failure: Transplantation and Device Therapies I. II (American Heart Association) 116: 372. Cite uses deprecated parameter |coauthors= (help)
  29. Popov, A. F.; Hosseini, M. T.; Zych, B.; Simon, A. R.; Bahrami, T. (2012). "HeartWare Left Ventricular Assist Device Implantation Through Bilateral Anterior Thoracotomy". The Annals of Thoracic Surgery 93 (2): 674–676. doi:10.1016/j.athoracsur.2011.09.055. PMID 22269746.
  30. Benton, Susan (19 August 2008). "HeartMate II Pivotal Clinical Trial Fact Sheet" (PDF). Thoratec Corporation. Retrieved 10 September 2009.
  31. Dewey, Todd (19 August 2008). "The HeartMate II LVAS Pivotal Trial". Dallas: Cardiopulmonary Research Science and Technology Institute. Archived from the original on 13 July 2007. Retrieved 10 September 2009.
  32. Mager, Belinda (25 April 2008). "FDA Approves HeartMate II Mechanical Heart Pump for Heart-Failure Patients Waiting for Organ Transplantation". New York Presbyterian University Hospital. Retrieved 13 September 2009.
  33. Miller, L. W.; Pagani, F. D.; Russell, S. D.; John, R.; Boyle, A. J.; Aaronson, K. D.; Conte, J. V.; Naka, Y.; Mancini, D.; Delgado, R. M.; MacGillivray, T. E.; Farrar, D. J.; Frazier, O. H.; HeartMate II Clinical Investigators (2007). "Use of a Continuous-Flow Device in Patients Awaiting Heart Transplantation". New England Journal of Medicine 357 (9): 885–896. doi:10.1056/NEJMoa067758. PMID 17761592.
  34. Gavin, Kara (23 April 2008). "Exciting times for heart-assisting devices at U-M". Ann Arbor: University of Michigan. Retrieved 28 August 2009.
  35. "Thoratec HeartMate II LVAS – P060040". Ann Arbor. Food and Drug Administration. 23 April 2008. Retrieved 28 August 2009.
  36. Eisen, H. J.; Hankins, S. R. (2009). "Continuous Flow Rotary Left Ventricular Assist Device". Journal of the American College of Cardiology 54 (4): 322–324. doi:10.1016/j.jacc.2009.04.028. PMID 19608029.
  37. Starling, Randall; Naka, Boyle, Gonzalez-Stawinski, et al (Aug 2009). "Initial FDA Post-Approval Study INTERMACS Registry Results with a Continuous Flow Left Ventricular Assist Device as a Bridge to Heart Transplantation". Journal of Cardiac Failure 15 (6): S46. doi:10.1016/j.cardfail.2009.06.252. Cite uses deprecated parameter |coauthors= (help)
  38. Miller, Leslie; Aaronson and Pagani (2008). "Harefield Recovery Protocol Study for Patients With Refractory Chronic Heart Failure (HARPS)". Clinicaltrials.gov. Retrieved 2009-08-03.
  39. Rose, E. A.; Moskowitz, A. J.; Packer, M.; Sollano, J. A.; Williams, D. L.; Tierney, A. R.; Heitjan, D. F.; Meier, P.; Ascheim, D. D.; Levitan, R. G.; Weinberg, A. D.; Stevenson, L. W.; Shapiro, P. A.; Lazar, R. M.; Watson, J. T.; Goldstein, D. J.; Gelijns, A. C. (1999). "The REMATCH trial: Rationale, design, and end points. Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure". The Annals of thoracic surgery 67 (3): 723–730. doi:10.1016/S0003-4975(99)00042-9. PMID 10215217.
  40. Rogers, J. G.; Butler, J.; Lansman, S. L.; Gass, A.; Portner, P. M.; Pasque, M. K.; Pierson, R. N.; Intrepid, I. (2007). "Chronic Mechanical Circulatory Support for Inotrope-Dependent Heart Failure Patients Who Are Not Transplant Candidates". Journal of the American College of Cardiology 50 (8): 741–747. doi:10.1016/j.jacc.2007.03.063. PMID 17707178.
  41. 1 2 Schaffer, Justin M.; Arnaoutakis, George J.; Allen, Jeremiah G.; Weiss, Eric S.; Patel, Nishant D.; Russell, Stuart D.; Shah, Ashish S.; Conte, John V. "Bleeding Complications and Blood Product Utilization With Left Ventricular Assist Device Implantation". The Annals of Thoracic Surgery 91 (3): 740–749. doi:10.1016/j.athoracsur.2010.11.007.
  42. 1 2 3 Goldstein, Daniel J.; Robert B. Beauford (2003). "Left ventricular assist devices and bleeding: adding insult to injury". Ann Torac Surg 75: S42–7. doi:10.1016/s0003-4975(03)00478-8. PMID 12820734.
  43. Spanier, Talia; Mehmet Oz; Howard Levin; Alan Weinberg; Kathy Stamatis; David Stern; Eric Rose; Anne Marie Schmidt (1996). "Activation of coagulation and fibrinolytic pathways with left ventricular assist devices". J Thorac Cardiovasc Surg 112: 1090–1097. doi:10.1016/s0022-5223(96)70111-3. PMID 8873737.
  44. Samuels, L. E.; Kohout, J.; Casanova-Ghosh, E.; Hagan, K.; Garwood, P.; Ferdinand, F.; Goldman, S. M. (2008). "Argatroban as a Primary or Secondary Postoperative Anticoagulant in Patients Implanted with Ventricular Assist Devices". The Annals of Thoracic Surgery 85 (5): 1651–1655. doi:10.1016/j.athoracsur.2008.01.100. PMID 18442558.
  45. Gordon RJ, Quagliarello B, Lowy FD (2006). "Ventricular assist device-related infections". Lancet Infect Dis 6 (7): 426–37. doi:10.1016/S1473-3099(06)70522-9. PMID 16790383.
  46. Holman, W. L.; Rayburn, B. K.; McGiffin, D. C.; Foley, B. A.; Benza, R. L.; Bourge, R. C.; Pinderski, L. J.; Kirklin, J. K. (2003). "Infection in ventricular assist devices: Prevention and treatment". The Annals of thoracic surgery 75 (6 Suppl): S48–S57. doi:10.1016/S0003-4975(03)00479-X. PMID 12820735.
  47. Marcuccilli, L; Casida, J; Peters, RM (2013). "Modification of self-concept in patients with a left-ventricular assist device: an initial exploration.". J Clin Nurs 22 (2456-64): 2456–64. doi:10.1111/j.1365-2702.2012.04332.x. PMID 23506318.
  48. Mcillvennan, CK; Allen, LA; Nowels, C; Brieke, A; Cleveland, JC; Matlock, DD (2014). "Decision making for destination therapy left ventricular assist devices: "there was no choice" versus "I thought about it an awful lot".". Circ Cardiovasc Qual Outcomes 7: 374–80. doi:10.1161/CIRCOUTCOMES.113.000729. PMID 24823949.
  49. Iacovetto, MC; Matlock, DD; Mcillvennan, CK; Thompson, JS; Bradley, W; Larue, SJ; Allen, LA (2014). "Educational resources for patients considering a left ventricular assist device: a cross-sectional review of internet, print, and multimedia materials.". Circ Cardiovasc Qual Outcomes 7: 905–11. doi:10.1161/CIRCOUTCOMES.114.000892. PMID 25316772.
  50. Matlock, DD; Allen, LA; Thompson, JS; Mcilvennan, CK. "A decision aid for Left Ventricular Assist Device (LVAD) for Destination Therapy A device for patients with advanced heart failure" (PDF).
  51. Ventracor was put into liquidation on 3 July 2009, whereby the company's assets including its intellectual property, data from clinical trials, plant and equipment and residual assets will be put up for saleBoyd, Tony (13 July 2009). "No Heart". Business Spectator. Retrieved 15 September 2009.
  52. Ascheim, D.D. (2014). "Mesenchymal Precursor Cells as Adjunctive Therapy in Recipients of Contemporary LVADs". Circulation 129 (22): 1–52. doi:10.1161/CIRCULATIONAHA.113.007412.

External links

This article is issued from Wikipedia - version of the Monday, May 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.