Legendre chi function

In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by


\chi_\nu(z) = \sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)^\nu}.

As such, it resembles the Dirichlet series for the polylogarithm, and, indeed, is trivially expressible in terms of the polylogarithm as

\chi_\nu(z) = \frac{1}{2}\left[\operatorname{Li}_\nu(z) - \operatorname{Li}_\nu(-z)\right].

The Legendre chi function appears as the discrete Fourier transform, with respect to the order ν, of the Hurwitz zeta function, and also of the Euler polynomials, with the explicit relationships given in those articles.

The Legendre chi function is a special case of the Lerch transcendent, and is given by

\chi_\nu(z)=2^{-\nu}z\,\Phi (z^2,\nu,1/2).\,

Identities

\chi_2(x) + \chi_2(1/x)= \frac{\pi^2}{4}-\frac{i \pi}{2}|\ln x| \qquad(x>0).
\frac{d}{dx}\chi_2(x) = \frac{{\rm arctanh\,} x}{x}.

Integral relations

\int_0^{\pi/2} \arcsin (r \sin \theta) d\theta 
= \chi_2\left(r\right)
\int_0^{\pi/2} \arctan (r \sin \theta) d\theta 
= -\frac{1}{2}\int_0^{\pi} \frac{ r \theta \cos \theta}{1+ r^2 \sin^2 \theta} d\theta  
= 2 \chi_2\left(\frac{\sqrt{1+r^2}- 1}{r}\right)
\int_0^{\pi/2} \arctan (p \sin \theta)\arctan (q \sin \theta) d\theta = \pi \chi_2\left(\frac{\sqrt{1+p^2}- 1}{p}\cdot\frac{\sqrt{1+q^2}- 1}{q}\right)
\int_0^{\alpha}\int_0^{\beta} \frac{dx dy}{1-x^2 y^2} = \chi_2(\alpha\beta)\qquad {\rm if}~~|\alpha\beta|\leq 1

References

This article is issued from Wikipedia - version of the Sunday, September 13, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.