Lehman's laws of software evolution

In software engineering, the laws of software evolution refer to a series of laws that Lehman and Belady formulated starting in 1974 with respect to software evolution.[1][2] The laws describe a balance between forces driving new developments on one hand, and forces that slow down progress on the other hand. Over the past decades the laws have been revised and extended several times.[3]

Context

Observing that most software is subject to change in the course of its existence, the authors set out to determine laws that these changes will typically obey, or must obey in order for the software to survive.

In his 1980 article,[1] Lehman qualified the application of such laws by distinguishing between three categories of software:

The laws are said to apply only to the last category of systems.

The laws

All told, eight laws were formulated:

  1. (1974) "Continuing Change" — an E-type system must be continually adapted or it becomes progressively less satisfactory[4]
  2. (1974) "Increasing Complexity" — as an E-type system evolves, its complexity increases unless work is done to maintain or reduce it[4]
  3. (1974) "Self Regulation" — E-type system evolution processes are self-regulating with the distribution of product and process measures close to normal[4]
  4. (1978) "Conservation of Organisational Stability (invariant work rate)" - the average effective global activity rate in an evolving E-type system is invariant over the product's lifetime[4]
  5. (1978) "Conservation of Familiarity" — as an E-type system evolves, all associated with it, developers, sales personnel and users, for example, must maintain mastery of its content and behaviour to achieve satisfactory evolution. Excessive growth diminishes that mastery. Hence the average incremental growth remains invariant as the system evolves.[4]
  6. (1991) "Continuing Growth" — the functional content of an E-type system must be continually increased to maintain user satisfaction over its lifetime
  7. (1996) "Declining Quality" — the quality of an E-type system will appear to be declining unless it is rigorously maintained and adapted to operational environment changes[5]
  8. (1996) "Feedback System" (first stated 1974, formalised as law 1996) — E-type evolution processes constitute multi-level, multi-loop, multi-agent feedback systems and must be treated as such to achieve significant improvement over any reasonable base

References

  1. 1 2 Lehman, Meir M. (1980). "Programs, Life Cycles, and Laws of Software Evolution". Proc. IEEE 68 (9): 1060–1076. doi:10.1109/proc.1980.11805.
  2. Lehman, M. M.; J. F. Ramil; P. D. Wernick; D. E. Perry; W. M. Turski (1997). "Metrics and laws of software evolution—the nineties view" (PDF). Proc. 4th International Software Metrics Symposium (METRICS '97). pp. 20–32. doi:10.1109/METRIC.1997.637156.
  3. Herraiz, Israel; Rodriguez, Daniel; Robles, Gregorio; Gonzalez-Barahona, Jesus M. (2013). "The evolution of the laws of software evolution". ACM Computing Surveys 46 (2): 1–28. doi:10.1145/2543581.2543595. ISSN 0360-0300.
  4. 1 2 3 4 5 Lehman, M. M. (1980). "On Understanding Laws, Evolution, and Conservation in the Large-Program Life Cycle". Journal of Systems and Software 1: 213–221. doi:10.1016/0164-1212(79)90022-0.
  5. Liguo Yu and Alok Mishra (2013) An Empirical Study of Lehman’s Law on Software Quality Evolution in International Journal of Software and Informatics, 11/2013; 7(3):469-481.
This article is issued from Wikipedia - version of the Sunday, March 06, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.