Lie bialgebra
In mathematics, a Lie bialgebra is the Lie-theoretic case of a bialgebra: it's a set with a Lie algebra and a Lie coalgebra structure which are compatible.
It is a bialgebra where the comultiplication is skew-symmetric and satisfies a dual Jacobi identity, so that the dual vector space is a Lie algebra, whereas the comultiplication is a 1-cocycle, so that the multiplication and comultiplication are compatible. The cocycle condition implies that, in practice, one studies only classes of bialgebras that are cohomologous to a Lie bialgebra on a coboundary.
They are also called Poisson-Hopf algebras, and are the Lie algebra of a Poisson-Lie group.
Lie bialgebras occur naturally in the study of the Yang-Baxter equations.
Definition
A vector space is a Lie bialgebra if it is a Lie algebra,
and there is the structure of Lie algebra also on the dual vector space
which is compatible.
More precisely the Lie algebra structure on
is given
by a Lie bracket
and the Lie algebra structure on
is given by a Lie
bracket
.
Then the map dual to
is called the cocommutator,
and the compatibility condition is the following cocyle relation:
where is the adjoint.
Note that this definition is symmetric and
is also a Lie bialgebra, the dual Lie bialgebra.
Example
Let be any semisimple Lie algebra.
To specify a Lie bialgebra structure we thus need to specify a compatible Lie algebra structure on the dual vector space.
Choose a Cartan subalgebra
and a choice of positive roots.
Let
be the corresponding opposite Borel subalgebras, so that
and there is a natural projection
.
Then define a Lie algebra
which is a subalgebra of the product , and has the same dimension as
.
Now identify
with dual of
via the pairing
where and
is the Killing form.
This defines a Lie bialgebra structure on
, and is the "standard" example: it underlies the Drinfeld-Jimbo quantum group.
Note that
is solvable, whereas
is semisimple.
Relation to Poisson-Lie groups
The Lie algebra of a Poisson-Lie group G has a natural structure of Lie bialgebra.
In brief the Lie group structure gives the Lie bracket on
as usual, and the linearisation of the Poisson structure on G
gives the Lie bracket on
(recalling that a linear Poisson structure on a vector space is the same thing as a Lie bracket on the dual vector space).
In more detail, let G be a Poisson-Lie group, with
being two smooth functions on the group manifold. Let
be the differential at the identity element. Clearly,
. The Poisson structure on the group then induces a bracket on
, as
where is the Poisson bracket. Given
be the Poisson bivector on the manifold, define
to be the right-translate of the bivector to the identity element in G. Then one has that
The cocommutator is then the tangent map:
so that
is the dual of the cocommutator.
See also
References
- H.-D. Doebner, J.-D. Hennig, eds, Quantum groups, Proceedings of the 8th International Workshop on Mathematical Physics, Arnold Sommerfeld Institute, Claausthal, FRG, 1989, Springer-Verlag Berlin, ISBN 3-540-53503-9.
- Vyjayanthi Chari and Andrew Pressley, A Guide to Quantum Groups, (1994), Cambridge University Press, Cambridge ISBN 0-521-55884-0.
- Beisert, N., & Spill, F. (2009). The classical r-matrix of AdS/CFT and its Lie bialgebra structure. Communications in mathematical physics, 285(2), 537-565. dx.doi.org/10.1007/s00220-008-0578-2