List of ARM microarchitectures
"ARM8" redirects here. For the ARMv8-A architecture, see ARMv8-A. For the ARMv8-R architecture, see ARMv8-R.
This is a list of microarchitectures based on the ARM family of instruction sets designed by ARM Holdings and 3rd parties, sorted by version of the ARM instruction set, release and name. ARM provides a summary of the numerous vendors who implement ARM cores in their design.[1] Keil also provides a somewhat newer summary of vendors of ARM based processors.[2] ARM further provides a chart[3] displaying an overview of the ARM processor lineup with performance and functionality versus capabilities for the more recent ARM core families.
ARM cores
Designed by ARM
ARM family | ARM architecture | ARM core | Feature | Cache (I / D), MMU | Typical MIPS @ MHz |
---|---|---|---|---|---|
ARM1 | ARMv1 | ARM1 | First implementation | None | |
ARM2 | ARMv2 | ARM2 | ARMv2 added the MUL (multiply) instruction | None | 4 MIPS @ 8 MHz 0.33 DMIPS/MHz |
ARMv2a | ARM250 | Integrated MEMC (MMU), graphics and I/O processor. ARMv2a added the SWP and SWPB (swap) instructions | None, MEMC1a | 7 MIPS @ 12 MHz | |
ARM3 | ARMv2a | ARM3 | First integrated memory cache | 4 KB unified | 12 MIPS @ 25 MHz 0.50 DMIPS/MHz |
ARM6 | ARMv3 | ARM60 | ARMv3 first to support 32-bit memory address space (previously 26-bit) | None | 10 MIPS @ 12 MHz |
ARM600 | As ARM60, cache and coprocessor bus (for FPA10 floating-point unit) | 4 KB unified | 28 MIPS @ 33 MHz | ||
ARM610 | As ARM60, cache, no coprocessor bus | 4 KB unified | 17 MIPS @ 20 MHz 0.65 DMIPS/MHz | ||
ARM7 | ARMv3 | ARM700 | 8 KB unified | 40 MHz | |
ARM710 | As ARM700, no coprocessor bus | 8 KB unified | 40 MHz | ||
ARM710a | As ARM710 | 8 KB unified | 40 MHz 0.68 DMIPS/MHz | ||
ARM7T | ARMv4T | ARM7TDMI(-S) | 3-stage pipeline, Thumb, ARMv4 first to drop legacy ARM 26-bit addressing | None | 15 MIPS @ 16.8 MHz 63 DMIPS @ 70 MHz |
ARM710T | As ARM7TDMI, cache | 8 KB unified, MMU | 36 MIPS @ 40 MHz | ||
ARM720T | As ARM7TDMI, cache | 8 KB unified, MMU with FCSE (Fast Context Switch Extension) | 60 MIPS @ 59.8 MHz | ||
ARM740T | As ARM7TDMI, cache | MPU | |||
ARM7EJ | ARMv5TEJ | ARM7EJ-S | 5-stage pipeline, Thumb, Jazelle DBX, Enhanced DSP instructions | None | |
ARM8 | ARMv4 | ARM810[4][5] | 5-stage pipeline, static branch prediction, double-bandwidth memory | 8 KB unified, MMU | 84 MIPS @ 72 MHz 1.16 DMIPS/MHz |
ARM9T | ARMv4T | ARM9TDMI | 5-stage pipeline, Thumb | None | |
ARM920T | As ARM9TDMI, cache | 16 KB / 16 KB, MMU with FCSE (Fast Context Switch Extension)[6] | 200 MIPS @ 180 MHz | ||
ARM922T | As ARM9TDMI, caches | 8 KB / 8 KB, MMU | |||
ARM940T | As ARM9TDMI, caches | 4 KB / 4 KB, MPU | |||
ARM9E | ARMv5TE | ARM946E-S | Thumb, Enhanced DSP instructions, caches | Variable, tightly coupled memories, MPU | |
ARM966E-S | Thumb, Enhanced DSP instructions | No cache, TCMs | |||
ARM968E-S | As ARM966E-S | No cache, TCMs | |||
ARMv5TEJ | ARM926EJ-S | Thumb, Jazelle DBX, Enhanced DSP instructions | Variable, TCMs, MMU | 220 MIPS @ 200 MHz | |
ARMv5TE | ARM996HS | Clockless processor, as ARM966E-S | No caches, TCMs, MPU | ||
ARM10E | ARMv5TE | ARM1020E | 6-stage pipeline, Thumb, Enhanced DSP instructions, (VFP) | 32 KB / 32 KB, MMU | |
ARM1022E | As ARM1020E | 16 KB / 16 KB, MMU | |||
ARMv5TEJ | ARM1026EJ-S | Thumb, Jazelle DBX, Enhanced DSP instructions, (VFP) | Variable, MMU or MPU | ||
ARM11 | ARMv6 | ARM1136J(F)-S[7] | 8-stage pipeline, SIMD, Thumb, Jazelle DBX, (VFP), Enhanced DSP instructions | Variable, MMU | 740 @ 532–665 MHz (i.MX31 SoC), 400–528 MHz |
ARMv6T2 | ARM1156T2(F)-S | 9-stage pipeline,[8] SIMD, Thumb-2, (VFP), Enhanced DSP instructions | Variable, MPU | ||
ARMv6Z | ARM1176JZ(F)-S | As ARM1136EJ(F)-S | Variable, MMU + TrustZone | 965 DMIPS @ 772 MHz, up to 2,600 DMIPS with four processors[9] | |
ARMv6K | ARM11MPCore | As ARM1136EJ(F)-S, 1–4 core SMP | Variable, MMU | ||
SecurCore | ARMv6-M | SC000 | 0.9 DMIPS/MHz | ||
ARMv4T | SC100 | ||||
ARMv7-M | SC300 | 1.25 DMIPS/MHz | |||
Cortex-M | ARMv6-M | Cortex-M0[10] | Microcontroller profile, most Thumb + some Thumb-2,[11] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory | Optional cache, no TCM, no MPU | 0.84 DMIPS/MHz |
Cortex-M0+[12] | Microcontroller profile, most Thumb + some Thumb-2,[11] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory | Optional cache, no TCM, optional MPU with 8 regions | 0.93 DMIPS/MHz | ||
Cortex-M1[13] | Microcontroller profile, most Thumb + some Thumb-2,[11] hardware multiply instruction (optional small), OS option adds SVC / banked stack pointer, optional system timer, no bit-banding memory | Optional cache, 0-1024 KB I-TCM, 0-1024 KB D-TCM, no MPU | 136 DMIPS @ 170 MHz,[14] (0.8 DMIPS/MHz FPGA-dependent)[15] | ||
ARMv7-M | Cortex-M3[16] | Microcontroller profile, Thumb / Thumb-2, hardware multiply and divide instructions, optional bit-banding memory | Optional cache, no TCM, optional MPU with 8 regions | 1.25 DMIPS/MHz | |
ARMv7E-M | Cortex-M4[17] | Microcontroller profile, Thumb / Thumb-2 / DSP / optional VFPv4-SP single-precision FPU, hardware multiply and divide instructions, optional bit-banding memory | Optional cache, no TCM, optional MPU with 8 regions | 1.25 DMIPS/MHz (1.27 w/FPU) | |
ARMv7E-M | Cortex-M7[18] | Microcontroller profile, Thumb / Thumb-2 / DSP / optional VFPv5 single and double precision FPU, hardware multiply and divide instructions | 0-64 KB I-cache, 0-64 KB D-cache, 0-16 MB I-TCM, 0-16 MB D-TCM (all these w/optional ECC), optional MPU with 8 or 16 regions | 2.14 DMIPS/MHz | |
Cortex-R | ARMv7-R | Cortex-R4[19] | Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lockstep with fault logic | 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt MPU with 8/12 regions | |
Cortex-R5[20] | Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lock-step with fault logic / optional as 2 independent cores, low-latency peripheral port (LLPP), accelerator coherency port (ACP)[21] | 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt MPU with 12/16 regions | |||
Cortex-R7[22] | Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 11-stage pipeline dual-core running lock-step with fault logic / out-of-order execution / dynamic register renaming / optional as 2 independent cores, low-latency peripheral port (LLPP), ACP[21] | 0–64 KB / 0–64 KB, ? of 0–128 KB TCM, opt MPU with 16 regions | |||
Cortex-R8 | TBD | TBD | |||
Cortex-A (32-bit) |
ARMv7-A | Cortex-A5[23] | Application profile, ARM / Thumb / Thumb-2 / DSP / SIMD / Optional VFPv4-D16 FPU / Optional NEON / Jazelle RCT and DBX, 1–4 cores / optional MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) | 4-64 KB / 4-64 KB L1, MMU + TrustZone | 1.57 DMIPS/MHz per core |
Cortex-A7[24] | Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4-D16 FPU / NEON / Jazelle RCT and DBX / Hardware virtualization, in-order execution, superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, architecture and feature set are identical to A15, 8-10 stage pipeline, low-power design[25] | 8-64 KB / 8-64 KB L1, 0–1 MB L2, MMU + TrustZone | 1.9 DMIPS/MHz per core | ||
Cortex-A8[26] | Application profile, ARM / Thumb / Thumb-2 / VFPv3 FPU / NEON / Jazelle RCT and DAC, 13-stage superscalar pipeline | 16-32 KB / 16–32 KB L1, 0–1 MB L2 opt ECC, MMU + TrustZone | Up to 2000 (2.0 DMIPS/MHz in speed from 600 MHz to greater than 1 GHz) | ||
Cortex-A9[27] | Application profile, ARM / Thumb / Thumb-2 / DSP / Optional VFPv3 FPU / Optional NEON / Jazelle RCT and DBX, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) | 16–64 KB / 16–64 KB L1, 0–8 MB L2 opt parity, MMU + TrustZone | 2.5 DMIPS/MHz per core, 10,000 DMIPS @ 2 GHz on Performance Optimized TSMC 40G (dual-core) | ||
Cortex-A12[28] | Application profile, ARM / Thumb-2 / DSP / VFPv4 FPU / NEON / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) | 32-64 KB / 32 KB L1, 256 KB-8 MB L2 | 3.0 DMIPS/MHz per core | ||
Cortex-A15[29] | Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, 15-24 stage pipeline[25] | 32 KB w/parity / 32 KB w/ECC L1, 0–4 MB L2, L2 has ECC, MMU + TrustZone | At least 3.5 DMIPS/MHz per core (up to 4.01 DMIPS/MHz depending on implementation)[30] | ||
Cortex-A17 | Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP | MMU + TrustZone | |||
Cortex-A32 | TBD | TBD | |||
Cortex-A (64-bit) |
ARMv8-A | Cortex-A35 | TBD | TBD | |
Cortex-A53[31] | Application profile, AArch32 and AArch64, 1-4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, dual issue, in-order pipeline | 8-64 KB w/parity / 8-64 KB w/ECC L1 per core, 128 KB-2 MB L2 shared, 40-bit physical addresses | 2.3 DMIPS/MHz | ||
Cortex-A57[32] | Application profile, AArch32 and AArch64, 1-4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, multi-issue, deeply out-of-order pipeline | 48 KB w/DED parity / 32 KB w/ECC L1 per core, 512 KB-2 MB L2 shared, 44-bit physical addresses | At least 4.1 DMIPS/MHz per core (up to 4.76 DMIPS/MHz depending on implementation) | ||
Cortex-A72[33] | Application profile, AArch32 and AArch64, 1-4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, multi-issue, deeply out-of-order pipeline | 48 KB w/DED parity / 32 KB w/ECC L1 per core, 512 KB-4 MB L2 shared, 44-bit physical addresses | At least 4.7 DMIPS/MHz per core (up to 5.0 DMIPS/MHz depending on implementation) | ||
ARM family | ARM architecture | ARM core | Feature | Cache (I / D), MMU | Typical MIPS @ MHz |
Designed by third parties
These cores implement the ARM instruction set, and were developed independently by companies with an architectural license from ARM.
Family | Instruction set | Microarchitecture | Feature | Cache (I / D), MMU | Typical MIPS @ MHz |
---|---|---|---|---|---|
StrongARM (Digital) |
ARMv4 | SA-110 | 5-stage pipeline | 16 KB / 16 KB, MMU | 100–206 MHz 1.0 DMIPS/MHz |
SA-1100 | derivative of the SA-110 | 16 KB / 8 KB, MMU | |||
Faraday[34] (Faraday Technology) |
ARMv4 | FA510 | 6-stage pipeline | Up to 32 KB / 32 KB cache, MPU | 1.26 DMIPS/MHz 100–200 MHz |
FA526 | Up to 32 KB / 32 KB cache, MMU | 1.26 MIPS/MHz 166-300 MHz | |||
FA626 | 8-stage pipeline | 32 KB / 32 KB cache, MMU | 1.35 DMIPS/MHz 500 MHz | ||
ARMv5TE | FA606TE | 5-stage pipeline | No cache, no MMU | 1.22 DMIPS/MHz 200 MHz | |
FA626TE | 8-stage pipeline | 32 KB / 32 KB cache, MMU | 1.43 MIPS/MHz 800 MHz | ||
FMP626TE | 8-stage pipeline, SMP | 1.43 MIPS/MHz 500 MHz | |||
FA726TE | 13 stage pipeline, dual issue | 2.4 DMIPS/MHz 1000 MHz | |||
XScale (Intel / Marvell) |
ARMv5TE | XScale | 7-stage pipeline, Thumb, Enhanced DSP instructions | 32 KB / 32 KB, MMU | 133–400 MHz |
Bulverde | Wireless MMX, Wireless SpeedStep added | 32 KB / 32 KB, MMU | 312–624 MHz | ||
Monahans[35] | Wireless MMX2 added | 32 KB / 32 KB (L1), optional L2 cache up to 512 KB, MMU | Up to 1.25 GHz | ||
Sheeva (Marvell) |
ARMv5 | Feroceon | 5-8 stage pipeline, single-issue | 16 KB / 16 KB, MMU | 600–2000 MHz |
Jolteon | 5-8 stage pipeline, dual-issue | 32 KB / 32 KB, MMU | |||
PJ1 (Mohawk) | 5-8 stage pipeline, single-issue, Wireless MMX2 | 32 KB / 32 KB, MMU | 1.46 DMIPS/MHz 1.06 GHz | ||
ARMv6 / ARMv7-A | PJ4 | 6-9 stage pipeline, dual-issue, Wireless MMX2, SMP | 32 KB / 32 KB, MMU | 2.41 DMIPS/MHz 1.6 GHz | |
Snapdragon (Qualcomm) |
ARMv7-A | Scorpion[36] | 1 or 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv3 FPU / NEON (128-bit wide) | 256 KB L2 per core | 2.1 DMIPS/MHz per core |
Krait[36] | 1, 2, or 4 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON (128-bit wide) | 4 KB / 4 KB L0, 16 KB / 16 KB L1, 512 KB L2 per core | 3.3 DMIPS/MHz per core | ||
ARMv8-A | Kryo[37] | 4 cores. | ? | Up to 2.2 GHz | |
Ax (Apple) |
ARMv7-A | Swift[38] | 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON | L1: 32 KB / 32 KB, L2: 1 MB | 3.5 DMIPS/MHz per core |
ARMv8-A | Cyclone[39] | 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64 | L1: 64 KB / 64 KB, L2: 1 MB, L3: 4 MB | 1.3 - 1.4 GHz | |
ARMv8-A | Typhoon[39][40] | 2 or 3 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64 | L1: 64 KB / 64 KB, L2: 1 or 2 MB, L3: 4 MB | 1.4 - 1.5 GHz | |
ARMv8-A | Twister[41] | 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64 | L1: 64 KB / 64 KB, L2: 2 MB, L3: 4 MB or 0 MB | 1.85 or 2.26 GHz | |
X-Gene (Applied Micro) |
ARMv8-A | X-Gene | 64-bit, quad issue, SMP, 64 cores[42] | Cache, MMU, virtualization | 3 GHz (4.2 DMIPS/MHz per core) |
Denver (Nvidia) |
ARMv8-A | Denver[43][44] | 2 cores. AArch64, 7-wide superscalar, in-order, dynamic code optimization, 128 MB optimization cache | 128 KB I / 64 KB D | Up to 2.5 GHz |
ThunderX (Cavium) |
ARMv8-A | ThunderX | 64-bit, with two models with 8-16 or 24-48 cores (×2 w/two chips) | ? | Up to 2.5 GHz |
K12 (AMD) |
ARMv8-A | K12[45] | ? | ? | ? |
Exynos (Samsung) |
ARMv8-A | M1 ("Mongoose")[46] | 64-bit | ? | 2.3 GHz |
ARM core timeline
The following table lists each core by the year it was announced.[47][48]
Year | Classic cores | Cortex cores | |||||||
---|---|---|---|---|---|---|---|---|---|
ARM7 | ARM8 | ARM9 | ARM10 | ARM11 | Microcontroller | Real-time | Application (32-bit) | Application (64-bit) | |
1994 | ARM7DI | ||||||||
1995 | ARM710a | ||||||||
1996 | ARM810 | ||||||||
1997 | ARM720T ARM740T | ||||||||
1998 | ARM7TDMI ARM710T | ARM9TDMI ARM940T | |||||||
1999 | ARM9E-S ARM966E-S | ||||||||
2000 | ARM920T ARM922T ARM946E-S | ARM1020T | |||||||
2001 | ARM7TDMI-S ARM7EJ-S | ARM9EJ-S ARM926EJ-S | ARM1020E ARM1022E | ||||||
2002 | ARM1026EJ-S | ARM1136J(F)-S | |||||||
2003 | ARM968E-S | ARM1156T2(F)-S ARM1176JZ(F)-S | |||||||
2004 | Cortex-M3 | ||||||||
2005 | ARM11MPCore | Cortex-A8 | |||||||
2006 | ARM996HS | ||||||||
2007 | Cortex-M1 | Cortex-A9 | |||||||
2008 | |||||||||
2009 | Cortex-M0 | Cortex-A5 | |||||||
2010 | Cortex-M4 | Cortex-A15 | |||||||
2011 | Cortex-R4 Cortex-R5 Cortex-R7 | Cortex-A7 | |||||||
2012 | Cortex-M0+ | Cortex-A53 Cortex-A57 | |||||||
2013 | Cortex-A12 | ||||||||
2014 | Cortex-M7 | Cortex-A17 | |||||||
2015 | Cortex-A35 Cortex-A72 | ||||||||
2016 | Cortex-R8 | Cortex-A32 |
See also
- Comparison of ARMv7-A cores
- Comparison of ARMv8-A cores
- List of applications of ARM cores
- ARM architecture
References
- ↑ "Line Card" (PDF). 2003. Retrieved 6 January 2011.
- ↑ ARM Ltd and ARM Germany GmbH. "Device Database". Keil. Retrieved 6 January 2011.
- ↑ "Processors". ARM. 2011. Retrieved 6 January 2011.
- ↑ ARM Holdings (7 August 1996). "ARM810 – Dancing to the Beat of a Different Drum" (PDF). Hot Chips. Retrieved 21 September 2013.
- ↑ "VLSI Technology Now Shipping ARM810". EE Times. 26 August 1996. Retrieved 21 September 2013.
- ↑ Register 13, FCSE PID register ARM920T Technical Reference Manual
- ↑ "ARM1136J(F)-S – ARM Processor". Arm.com. Archived from the original on 21 March 2009. Retrieved 18 April 2009.
- ↑ https://www.arm.com/products/processors/classic/arm11/arm1156.php
- ↑ "ARM11 Processor Family". ARM. Retrieved 12 December 2010.
- ↑ Cortex-M0 Specification Summary; ARM Holdings.
- 1 2 3 Cortex-M0/M0+/M1 Instruction set; ARM Holding.
- ↑ Cortex-M0+ Specification Summary; ARM Holdings.
- ↑ Cortex-M1 Specification Summary; ARM Holdings.
- ↑ "ARM Extends Cortex Family with First Processor Optimized for FPGA" (Press release). ARM Holdings. 19 March 2007. Retrieved 11 April 2007.
- ↑ "ARM Cortex-M1". ARM product website. Retrieved 11 April 2007.
- ↑ Cortex-M3 Specification Summary; ARM Holdings.
- ↑ Cortex-M4 Specification Summary; ARM Holdings.
- ↑ Cortex-M7 Specification Summary; ARM Holdings.
- ↑ Cortex-R4 Specification Summary; ARM Holdings.
- ↑ Cortex-R5 Specification Summary; ARM Holdings.
- 1 2 Cortex-R5 & Cortex-R7 Press Release; ARM Holdings; 31 January 2011.
- ↑ Cortex-R7 Specification Summary; ARM Holdings.
- ↑ Cortex-A5 Specification Summary; ARM Holdings.
- ↑ Cortex-A7 Specification Summary; ARM Holdings.
- 1 2 "Deep inside ARM's new Intel killer". The Register. 20 October 2011.
- ↑ Cortex-A8 Specification Summary; ARM Holdings.
- ↑ Cortex-A9 Specification Summary; ARM Holdings.
- ↑ Cortex-A12 Summary; ARM Holdings.
- ↑ Cortex-A15 Specification Summary; ARM Holdings.
- ↑ Exclusive : ARM Cortex-A15 "40 Per Cent" Faster Than Cortex-A9 | ITProPortal.com
- ↑ "Cortex-A53 Processor". ARM Holdings. Retrieved 13 October 2012.
- ↑ "Cortex-A57 Processor". ARM Holdings. Retrieved 13 October 2012.
- ↑ "Cortex-A72 Processor". ARM Holdings. Retrieved 3 February 2015.
- ↑ "Processor Cores". Faraday Technology.
- ↑ "3rd Generation Intel XScale Microarchitecture: Developer’s Manual" (PDF). download.intel.com. Intel. May 2007. Retrieved 2 December 2010.
- 1 2 Qualcomm's New Snapdragon S4: MSM8960 & Krait Architecture Explored; Anandtech.
- ↑ "Snapdragon 820 and Kryo CPU: heterogeneous computing and the role of custom compute". Qualcomm. 2015-09-02. Retrieved 2015-09-06.
- ↑ Lal Shimpi, Anand (15 September 2012). "The iPhone 5's A6 SoC: Not A15 or A9, a Custom Apple Core Instead". AnandTech. Retrieved 15 September 2012.
- 1 2 Smith, Ryan (November 11, 2014). "Apple A8X's GPU - GAX6850, Even Better Than I Thought". Anandtech.
- ↑ Chester, Brandon (July 15, 2015). "Apple Refreshes The iPod Touch With A8 SoC And New Cameras". Anandtech. Retrieved September 11, 2015.
- ↑ Ho, Joshua (September 28, 2015). "iPhone 6s and iPhone 6s Plus Preliminary Results". Anandtech. Retrieved December 18, 2015.
- ↑ http://www.pcworld.com/article/2464600/appliedmicros-64core-chip-could-spark-off-arm-core-war.html
- ↑ http://www.anandtech.com/Gallery/Album/3847
- ↑ http://blogs.nvidia.com/blog/2014/08/11/tegra-k1-denver-64-bit-for-android/
- ↑ http://www.anandtech.com/show/7990/amd-announces-k12-core-custom-64bit-arm-design-in-2016
- ↑ "Samsung Announces Exynos 8890 with Cat.12/13 Modem and Custom CPU". AnandTech.
- ↑ ARM Company Milestones.
- ↑ ARM Press Releases.
Further reading
See also: List of books about ARM Cortex-M
|
|
|
This article is issued from Wikipedia - version of the Friday, March 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.