List of integrals of logarithmic functions

The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals.

Note: x>0 is assumed throughout this article, and the constant of integration is omitted for simplicity.

Integrals involving only logarithmic functions

\int \log _{b}x\;dx=x\log _{b}{\frac {x}{e}}
\int \ln ax\;dx=x\ln ax-x
\int \ln(ax+b)\;dx={\frac {(ax+b)\ln(ax+b)-ax}{a}}
\int (\ln x)^{2}\;dx=x(\ln x)^{2}-2x\ln x+2x
\int (\ln x)^{n}\;dx=x\sum _{k=0}^{n}(-1)^{n-k}{\frac {n!}{k!}}(\ln x)^{k}=\Theta (x(\ln x)^{n})
\int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{k=2}^{\infty }{\frac {(\ln x)^{k}}{k\cdot k!}}
\int {\frac {dx}{\ln x}}={\text{li}}(x) = the logarithmic integral (asymptotically, {\text{li}}(x)=\Theta ({\frac {x}{\ln x}})).
\int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}

Integrals involving logarithmic and power functions

\int x^{m}\ln x\;dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(for }}m\neq -1{\mbox{)}}
\int x^{m}(\ln x)^{n}\;dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(for }}m\neq -1{\mbox{)}}
\int {\frac {(\ln x)^{n}\;dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}
\int {\frac {\ln {x^{n}}\;dx}{x}}={\frac {(\ln {x^{n}})^{2}}{2n}}\qquad {\mbox{(for }}n\neq 0{\mbox{)}}
\int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}
\int {\frac {(\ln x)^{n}\;dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}
\int {\frac {x^{m}\;dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}
\int {\frac {dx}{x\ln x}}=\ln \left|\ln x\right|
\int {\frac {dx}{x\ln x\ln \ln x}}=\ln \left|\ln \left|\ln x\right|\right|, etc.
\int {\frac {dx}{x\ln \ln x}}={\text{li}}(\ln x) where li is the logarithmic integral.
\int {\frac {dx}{x^{n}\ln x}}=\ln \left|\ln x\right|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(n-1)^{k}(\ln x)^{k}}{k\cdot k!}}
\int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}
\int \ln(x^{2}+a^{2})\;dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}}
\int {\frac {x}{x^{2}+a^{2}}}\ln(x^{2}+a^{2})\;dx={\frac {1}{4}}\ln ^{2}(x^{2}+a^{2})

Integrals involving logarithmic and trigonometric functions

\int \sin(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))
\int \cos(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))

Integrals involving logarithmic and exponential functions

\int e^{x}\left(x\ln x-x-{\frac {1}{x}}\right)\;dx=e^{x}(x\ln x-x-\ln x)
\int {\frac {1}{e^{x}}}\left({\frac {1}{x}}-\ln x\right)\;dx={\frac {\ln x}{e^{x}}}
\int e^{x}\left({\frac {1}{\ln x}}-{\frac {1}{x\ln ^{2}x}}\right)\;dx={\frac {e^{x}}{\ln x}}

n consecutive integrations

For n consecutive integrations, the formula

\int \ln x\;dx=x\;(\ln x-1)+C_{0}

generalizes to

\int \cdot \cdot \cdot \int \ln x\;dx\cdot \cdot \cdot \;dx={\frac {x^{n}}{n!}}\left(\ln \,x-\sum _{k=1}^{n}{\frac {1}{k}}\right)+\sum _{k=0}^{n-1}C_{k}{\frac {x^{k}}{k!}}

References

This article is issued from Wikipedia - version of the Tuesday, December 15, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.