List of space groups

There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point groups of the unit cell.

Symbols

In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.

These are the Bravais lattices in three dimensions:

A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure.

A gyration point can be replaced by a screw axis is noted by a number, n, where the angle of rotation is \color{Black}\tfrac{360^\circ}{n}. The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° (twofold) rotation followed by a translation of ½ of the lattice vector. 31 is a 120° (threefold) rotation followed by a translation of ⅓ of the lattice vector.

The possible screw axis are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group. It is related to the order in which Shoenflies derived space groups.

In Fedorov symbol, the type of space group is denoted as s (symmorphic ), h (hemisymmorphic), or a (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups. Symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups. Hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. All the other space groups are asymmorphic. Example for point group 4/mmm (\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}): the symmorphic space groups are P4/mmm (P\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}, 36s) and I4/mmm (I\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m}, 37s); hemisymmorphic space groups should contain axial combination 422, these are P4/mcc (P\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{c}, 35h), P4/nbm (P\tfrac{4}{n}\tfrac{2}{b}\tfrac{2}{m}, 36h), P4/nnc (P\tfrac{4}{n}\tfrac{2}{n}\tfrac{2}{c}, 37h), and I4/mcm (I\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{m}, 38h).

List of Triclinic

Triclinic Bravais lattice
Triclinic crystal system
Number Point group Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
11P1 P 1 C_1^1 1s(a/b/c)\cdot 1
21P1 P 1 C_i^1 2s(a/b/c)\cdot \tilde 2

List of Monoclinic

Monoclinic Bravais lattice
Simple
(P)
Base
(C)
Monoclinic crystal system
Number Point group Short name Full name(s) Schoenflies Fedorov Shubnikov Fibrifold
32P2 P 1 2 1P 1 1 2 C_2^1 3s (b:(c/a)):2
42P21P 1 21 1P 1 1 21 C_2^2 1a (b:(c/a)):2_1
52C2 C 1 2 1B 1 1 2 C_2^3 4s \left ( \tfrac{a+b}{2}/b:(c/a)\right ) :2
6mPm P 1 m 1P 1 1 m C_s^1 5s (b:(c/a))\cdot m
7mPc P 1 c 1P 1 1 b C_s^2 1h (b:(c/a))\cdot \tilde c
8mCm C 1 m 1B 1 1 m C_s^3 6s \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot m
9mCc C 1 c 1B 1 1 b C_s^4 2h \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot \tilde c
102/mP2/mP 1 2/m 1P 1 1 2/m C_{2h}^1 7s (b:(c/a))\cdot m:2
112/mP21/mP 1 21/m 1P 1 1 21/m C_{2h}^2 2a (b:(c/a))\cdot m:2_1
122/mC2/mC 1 2/m 1B 1 1 2/m C_{2h}^3 8s \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot m:2
132/mP2/cP 1 2/c 1P 1 1 2/b C_{2h}^4 3h (b:(c/a))\cdot \tilde c:2
142/mP21/cP 1 21/c 1P 1 1 21/b C_{2h}^5 3a (b:(c/a))\cdot \tilde c:2_1
152/mC2/cC 1 2/c 1B 1 1 2/b C_{2h}^6 4h \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot \tilde c:2

List of Orthorhombic

Orthorhombic crystal system
Number Point group Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
16222P222P 2 2 2 D_2^1 9s (c:a:b):2:2
17222P2221P 2 2 21 D_2^2 4a (c:a:b):2_1:2
18222P21212P 21 21 2 D_2^3 7a (c:a:b):2 2_1
19222P212121P 21 21 21 D_2^4 8a (c:a:b):2_1 2_1
20222C2221C 2 2 21 D_2^5 5a \left ( \tfrac{a+b}{2}:c:a:b\right ) :2_1:2
21222C222C 2 2 2 D_2^6 10s \left ( \tfrac{a+b}{2}:c:a:b\right ) :2:2
22222F222F 2 2 2 D_2^7 12s \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) :2:2
23222I222I 2 2 2 D_2^8 11s \left ( \tfrac{a+b+c}{2}/c:a:b\right ) :2:2
24222I212121I 21 21 21 D_2^9 6a \left ( \tfrac{a+b+c}{2}/c:a:b \right ) :2:2_1
25mm2Pmm2P m m 2 C_{2v}^1 13s (c:a:b):m \cdot 2
26mm2Pmc21P m c 21 C_{2v}^2 9a (c:a:b): \tilde c \cdot 2_1
27mm2Pcc2P c c 2 C_{2v}^3 5h (c:a:b): \tilde c \cdot 2
28mm2Pma2P m a 2 C_{2v}^4 6h (c:a:b): \tilde a \cdot 2
29mm2Pca21P c a 21 C_{2v}^5 11a (c:a:b): \tilde a \cdot 2_1
30mm2Pnc2P n c 2 C_{2v}^6 7h (c:a:b): \tilde c \odot 2
31mm2Pmn21P m n 21 C_{2v}^7 10a (c:a:b): \widetilde{ac} \cdot 2_1
32mm2Pba2P b a 2 C_{2v}^8 9h (c:a:b): \tilde a \odot 2
33mm2Pna21P n a 21 C_{2v}^9 12a (c:a:b): \tilde a \odot 2_1
34mm2Pnn2P n n 2 C_{2v}^{10} 8h (c:a:b): \widetilde{ac} \odot 2
35mm2Cmm2C m m 2 C_{2v}^{11} 14s \left ( \tfrac{a+b}{2}:c:a:b\right ) :m \cdot 2
36mm2Cmc21C m c 21 C_{2v}^{12} 13a \left ( \tfrac{a+b}{2}:c:a:b\right ) :\tilde c \cdot 2_1
37mm2Ccc2C c c 2 C_{2v}^{13} 10h \left ( \tfrac{a+b}{2}:c:a:b\right ) : \tilde c \cdot 2
38mm2Amm2A m m 2 C_{2v}^{14} 15s \left ( \tfrac{b+c}{2}/c:a:b\right ):m \cdot 2
39mm2Aem2A b m 2 C_{2v}^{15} 11h \left ( \tfrac{b+c}{2}/c:a:b\right ) :m \cdot 2_1
40mm2Ama2A m a 2 C_{2v}^{16} 12h \left ( \tfrac{b+c}{2}/c:a:b\right ) : \tilde a \cdot 2
41mm2Aea2A b a 2 C_{2v}^{17} 13h \left ( \tfrac{b+c}{2}/c:a:b\right ) : \tilde a \cdot 2_1
42mm2Fmm2F m m 2 C_{2v}^{18} 17s \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) :m \cdot 2
43mm2Fdd2F dd2 C_{2v}^{19} 16h \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b \right ) : \tfrac{1}{2} \widetilde{ac} \odot 2
44mm2Imm2I m m 2 C_{2v}^{20} 16s \left ( \tfrac{a+b+c}{2}/c:a:b \right ) :m \cdot 2
45mm2Iba2I b a 2 C_{2v}^{21} 15h \left ( \tfrac{a+b+c}{2}/c:a:b \right ) : \tilde c \cdot 2
46mm2Ima2I m a 2 C_{2v}^{22} 14h \left ( \tfrac{a+b+c}{2}/c:a:b \right ) : \tilde a \cdot 2
47\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PmmmP 2/m 2/m 2/m D_{2h}^1 18s \left ( c:a:b \right ) \cdot m:2 \cdot m
48\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PnnnP 2/n 2/n 2/n D_{2h}^2 19h \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \odot \widetilde{ac}
49\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PccmP 2/c 2/c 2/m D_{2h}^3 17h \left ( c:a:b \right ) \cdot m:2 \cdot \tilde c
50\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PbanP 2/b 2/a 2/n D_{2h}^4 18h \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \odot \tilde a
51\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PmmaP 21/m 2/m 2/a D_{2h}^5 14a \left ( c:a:b \right ) \cdot \tilde a :2 \cdot m
52\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PnnaP 2/n 21/n 2/a D_{2h}^6 17a \left ( c:a:b \right ) \cdot \tilde a:2 \odot \widetilde{ac}
53\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PmnaP 2/m 2/n 21/a D_{2h}^7 15a \left ( c:a:b \right ) \cdot \tilde a:2_1 \cdot \widetilde{ac}
54\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PccaP 21/c 2/c 2/a D_{2h}^8 16a \left ( c:a:b \right ) \cdot \tilde a:2 \cdot \tilde c
55\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PbamP 21/b 21/a 2/m D_{2h}^9 22a \left ( c:a:b \right ) \cdot m:2 \odot \tilde a
56\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PccnP 21/c 21/c 2/n D_{2h}^{10} 27a \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \cdot \tilde c
57\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PbcmP 2/b 21/c 21/m D_{2h}^{11} 23a \left ( c:a:b \right ) \cdot m:2_1 \odot \tilde c
58\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PnnmP 21/n 21/n 2/m D_{2h}^{12} 25a \left ( c:a:b \right ) \cdot m:2 \odot \widetilde{ac}
59\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PmmnP 21/m 21/m 2/n D_{2h}^{13} 24a \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \cdot m
60\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PbcnP 21/b 2/c 21/n D_{2h}^{14} 26a \left ( c:a:b \right ) \cdot \widetilde{ab}:2_1 \odot \tilde c
61\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PbcaP 21/b 21/c 21/a D_{2h}^{15} 29a \left ( c:a:b \right ) \cdot \tilde a:2_1 \odot \tilde c
62\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}PnmaP 21/n 21/m 21/a D_{2h}^{16} 28a \left ( c:a:b \right ) \cdot \tilde a:2_1 \odot m
63\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}CmcmC 2/m 2/c 21/m D_{2h}^{17} 18a \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2_1 \cdot \tilde c
64\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}CmcaC 2/m 2/c 21/a D_{2h}^{18} 19a\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2_1 \cdot \tilde c
65\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}CmmmC 2/m 2/m 2/m D_{2h}^{19} 19s\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot m
66\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}CccmC 2/c 2/c 2/m D_{2h}^{20} 20h\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot \tilde c
67\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}CmmeC 2/m 2/m 2/e D_{2h}^{21} 21h\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2 \cdot m
68\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}CcceC 2/c 2/c 2/e D_{2h}^{22} 22h\left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2 \cdot \tilde c
69\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}FmmmF 2/m 2/m 2/m D_{2h}^{23} 21s \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot m
70\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}FdddF 2/d 2/d 2/d D_{2h}^{24} 24h \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) \cdot \tfrac{1}{2}\widetilde{ab}:2 \odot \tfrac{1}{2}\widetilde{ac}
71\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}ImmmI 2/m 2/m 2/m D_{2h}^{25} 20s \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot m:2 \cdot m
72\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}IbamI 2/b 2/a 2/m D_{2h}^{26} 23h \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot m:2 \cdot \tilde c
73\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}IbcaI 2/b 2/c 2/a D_{2h}^{27} 21a \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot \tilde a :2 \cdot \tilde c
74\tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m}ImmaI 2/m 2/m 2/a D_{2h}^{28} 20a \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot \tilde a :2 \cdot m

List of Tetragonal

Tetragonal crystal system
Number Point group Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
754P4P 4 C_4^1 22s (c:a:a):4
764P41P 41 C_4^2 30a (c:a:a) :4_1
774P42P 42 C_4^3 33a (c:a:a) :4_2
784P43P 43 C_4^4 31a (c:a:a) :4_3
794I4I 4 C_4^5 23s \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4
804I41I 41 C_4^6 32a \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1
814P4P 4 S_4^1 26s (c:a:a):\tilde 4
824I4I 4 S_4^2 27s \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4
834/mP4/mP 4/m C_{4h}^1 28s (c:a:a)\cdot m:4
844/mP42/mP 42/m C_{4h}^2 41a (c:a:a)\cdot m:4_2
854/mP4/nP 4/n C_{4h}^3 29h (c:a:a)\cdot \widetilde{ab}:4
864/mP42/nP 42/n C_{4h}^4 42a (c:a:a)\cdot \widetilde{ab}:4_2
874/mI4/mI 4/m C_{4h}^5 29s \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4
884/mI41/aI 41/a C_{4h}^6 40a \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1
89422P422P 4 2 2 D_4^1 30s (c:a:a):4:2
90422P4212P4212 D_4^2 43a (c:a:a):4 2_1
91422P4122P 41 2 2 D_4^3 44a (c:a:a):4_1:2
92422P41212P 41 21 2 D_4^4 48a (c:a:a):4_1 2_1
93422P4222P 42 2 2 D_4^5 47a (c:a:a):4_2:2
94422P42212P 42 21 2 D_4^6 50a (c:a:a):4_2 2_1
95422P4322P 43 2 2 D_4^7 45a (c:a:a):4_3:2
96422P43212P 43 21 2 D_4^8 49a (c:a:a):4_3 2_1
97422I422I 4 2 2 D_4^9 31s \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4:2
98422I4122I 41 2 2 D_4^{10} 46a \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4:2_1
994mmP4mmP 4 m m C_{4v}^1 24s (c:a:a):4\cdot m
1004mmP4bm P 4 b m C_{4v}^2 26h (c:a:a):4\odot \tilde a
1014mmP42cm P 42 c m C_{4v}^3 37a (c:a:a):4_2\cdot \tilde c
1024mmP42nm P 42 n m C_{4v}^4 38a (c:a:a):4_2\odot \widetilde{ac}
1034mmP4cc P 4 c c C_{4v}^5 25h (c:a:a):4\cdot \tilde c
1044mmP4nc P 4 n c C_{4v}^6 27h (c:a:a):4\odot \widetilde{ac}
1054mmP42mc P 42 m c C_{4v}^7 36a (c:a:a):4_2\cdot m
1064mmP42bc P 42 b c C_{4v}^8 39a (c:a:a):4\odot \tilde a
1074mmI4mm I 4 m m C_{4v}^9 25s \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4\cdot m
1084mmI4cm I 4 c m C_{4v}^{10} 28h \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4\cdot \tilde c
1094mmI41md I 41 m d C_{4v}^{11} 34a \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1\odot m
1104mmI41cd I 41 c d C_{4v}^{12} 35a \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1\odot \tilde c
11142mP42m P 4 2 m D_{2d}^1 32s (c:a:a):\tilde 4 :2
11242mP42c P 4 2 c D_{2d}^2 30h (c:a:a):\tilde 4 2
11342mP421m P 4 21 m D_{2d}^3 52a (c:a:a):\tilde 4 \cdot \widetilde{ab}
11442mP421c P 4 21 c D_{2d}^4 53a (c:a:a):\tilde 4 \cdot \widetilde{abc}
11542mP4m2 P 4 m 2 D_{2d}^5 33s (c:a:a):\tilde 4 \cdot m
11642mP4c2 P 4 c 2 D_{2d}^6 31h (c:a:a):\tilde 4 \cdot \tilde c
11742mP4b2 P 4 b 2 D_{2d}^7 32h (c:a:a):\tilde 4 \odot \tilde a
11842mP4n2 P 4 n 2 D_{2d}^8 33h (c:a:a):\tilde 4 \cdot \widetilde{ac}
11942mI4m2 I 4 m 2 D_{2d}^9 35s \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \cdot m
12042mI4c2 I 4 c 2 D_{2d}^{10} 34h \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \cdot \tilde c
12142mI42m I 4 2 m D_{2d}^{11} 34s \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 :2
12242mI42d I 4 2 d D_{2d}^{12} 51a \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \odot \tfrac{1}{2}\widetilde{abc}
1234/m 2/m 2/mP4/mmm P 4/m 2/m 2/m D_{4h}^1 36s (c:a:a)\cdot m:4\cdot m
1244/m 2/m 2/mP4/mcc P 4/m 2/c 2/c D_{4h}^2 35h (c:a:a)\cdot m:4\cdot \tilde c
1254/m 2/m 2/mP4/nbm P 4/n 2/b 2/m D_{4h}^3 36h (c:a:a)\cdot \widetilde{ab}:4\odot \tilde a
1264/m 2/m 2/mP4/nnc P 4/n 2/n 2/c D_{4h}^4 37h (c:a:a)\cdot \widetilde{ab}:4\odot \widetilde{ac}
1274/m 2/m 2/mP4/mbm P 4/m 21/b 2/m D_{4h}^5 54a (c:a:a)\cdot m:4\odot \tilde a
1284/m 2/m 2/mP4/mnc P 4/m 21/n 2/c D_{4h}^6 56a (c:a:a)\cdot m:4\odot \widetilde{ac}
1294/m 2/m 2/mP4/nmm P 4/n 21/m 2/m D_{4h}^7 55a (c:a:a)\cdot \widetilde{ab}:4\cdot m
1304/m 2/m 2/mP4/ncc P 4/n 21/c 2/c D_{4h}^8 57a (c:a:a)\cdot \widetilde{ab}:4\cdot \tilde c
1314/m 2/m 2/mP42/mmc P 42/m 2/m 2/c D_{4h}^9 60a (c:a:a)\cdot m:4_2\cdot m
1324/m 2/m 2/mP42/mcm P 42/m 2/c 2/m D_{4h}^{10} 61a (c:a:a)\cdot m:4_2\cdot \tilde c
1334/m 2/m 2/mP42/nbc P 42/n 2/b 2/c D_{4h}^{11} 63a (c:a:a)\cdot \widetilde{ab}:4_2\odot \tilde a
1344/m 2/m 2/mP42/nnm P 42/n 2/n 2/m D_{4h}^{12} 62a (c:a:a)\cdot \widetilde{ab}:4_2\odot \widetilde{ac}
1354/m 2/m 2/mP42/mbc P 42/m 21/b 2/c D_{4h}^{13} 66a (c:a:a)\cdot m:4_2\odot \tilde a
1364/m 2/m 2/mP42/mnm P 42/m 21/n 2/m D_{4h}^{14} 65a (c:a:a)\cdot m:4_2\odot \widetilde{ac}
1374/m 2/m 2/mP42/nmc P 42/n 21/m 2/c D_{4h}^{15} 67a (c:a:a)\cdot \widetilde{ab}:4_2\cdot m
1384/m 2/m 2/mP42/ncm P 42/n 21/c 2/m D_{4h}^{16} 65a (c:a:a)\cdot \widetilde{ab}:4_2\cdot \tilde c
1394/m 2/m 2/mI4/mmm I 4/m 2/m 2/m D_{4h}^{17} 37s \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4\cdot m
1404/m 2/m 2/mI4/mcm I 4/m 2/c 2/m D_{4h}^{18} 38h \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4\cdot \tilde c
1414/m 2/m 2/mI41/amd I 41/a 2/m 2/d D_{4h}^{19} 59a \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1\odot m
1424/m 2/m 2/mI41/acd I 41/a 2/c 2/d D_{4h}^{20} 58a \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1\odot \tilde c

List of Trigonal

Unit cells for trigonal crystal system
Rhombohedral
(R)
Hexagonal
(P)
Trigonal crystal system
Number Point group Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
1433P3 P 3 C_3^1 38s (c:(a/a)):3
1443P31 P 31 C_3^2 68a (c:(a/a)):3_1
1453P32 P 32 C_3^3 69a (c:(a/a)):3_2
1463R3 R 3 C_3^4 39s (a/a/a)/3
1473P3 P 3 C_{3i}^1 51s (c:(a/a)):\tilde 6
1483R3 R 3 C_{3i}^2 52s (a/a/a)/\tilde 6
14932P312 P 3 1 2 D_3^1 45s (c:(a/a)):2:3
15032P321 P 3 2 1 D_3^2 44s (c:(a/a))\cdot 2:3
15132P3112 P 31 1 2 D_3^3 72a (c:(a/a)):2:3_1
15232P3121 P 31 2 1 D_3^4 70a (c:(a/a))\cdot 2:3_1
15332P3212 P 32 1 2 D_3^5 73a (c:(a/a)):2:3_2
15432P3221 P 32 2 1 D_3^6 71a (c:(a/a))\cdot 2:3_2
15532R32 R 3 2 D_3^7 46s (a/a/a)/3:2
1563mP3m1 P 3 m 1 C_{3v}^1 40s (c:(a/a)):m\cdot 3
1573mP31m P 3 1 m C_{3v}^2 41s (c:(a/a))\cdot m\cdot 3
1583mP3c1 P 3 c 1 C_{3v}^3 39h (c:(a/a)):\tilde c:3
1593mP31c P 3 1 c C_{3v}^4 40h (c:(a/a))\cdot\tilde c :3
1603mR3m R 3 m C_{3v}^5 42s (a/a/a)/3\cdot m
1613mR3c R 3 c C_{3v}^6 41h (a/a/a)/3\cdot\tilde c
1623 2/mP31m P 3 1 2/m D_{3d}^1 56s (c:(a/a))\cdot m\cdot\tilde 6
1633 2/mP31c P 3 1 2/c D_{3d}^2 46h (c:(a/a))\cdot\tilde c \cdot\tilde 6
1643 2/mP3m1 P 3 2/m 1 D_{3d}^3 55s (c:(a/a)):m\cdot\tilde 6
1653 2/mP3c1 P 3 2/c 1 D_{3d}^4 45h (c:(a/a)):\tilde c \cdot\tilde 6
1663 2/mR3m R 3 2/m D_{3d}^5 57s (a/a/a)/\tilde 6 \cdot m
1673 2/mR3c R 3 2/c D_{3d}^6 47h (a/a/a)/\tilde 6 \cdot\tilde c

List of Hexagonal

Hexagonal lattice cell
(P)
Hexagonal crystal system
Number Point group Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
1686P6 P 6 C_6^1 49s (c:(a/a)):6
1696P61 P 61 C_6^2 74a (c:(a/a)):6_1
1706P65 P 65 C_6^3 75a (c:(a/a)):6_5
1716P62 P 62 C_6^4 76a (c:(a/a)):6_2
1726P64 P 64 C_6^5 77a (c:(a/a)):6_4
1736P63 P 63 C_6^6 78a (c:(a/a)):6_3
1746P6 P 6 C_{3h}^1 43s (c:(a/a)):3:m
1756/mP6/m P 6/m C_{6h}^1 53s (c:(a/a))\cdot m :6
1766/mP63/m P 63/m C_{6h}^2 81a (c:(a/a))\cdot m :6_3
177622P622 P 6 2 2 D_6^1 54s (c:(a/a))\cdot 2 :6
178622P6122 P 61 2 2 D_6^2 82a (c:(a/a))\cdot 2 :6_1
179622P6522 P 65 2 2 D_6^3 83a (c:(a/a))\cdot 2 :6_5
180622P6222 P 62 2 2 D_6^4 84a (c:(a/a))\cdot 2 :6_2
181622P6422 P 64 2 2 D_6^5 85a (c:(a/a))\cdot 2 :6_4
182622P6322 P 63 2 2 D_6^6 86a (c:(a/a))\cdot 2 :6_3
1836mmP6mm P 6 m m C_{6v}^1 50s (c:(a/a)):m\cdot 6
1846mmP6cc P 6 c c C_{6v}^2 44h (c:(a/a)):\tilde c \cdot 6
1856mmP63cm P 63 c m C_{6v}^3 80a (c:(a/a)):\tilde c \cdot 6_3
1866mmP63mc P 63 m c C_{6v}^4 79a (c:(a/a)):m\cdot 6_3
1876m2P6m2 P 6 m 2 D_{3h}^1 48s (c:(a/a)):m\cdot 3:m
1886m2P6c2 P 6 c 2 D_{3h}^2 43h (c:(a/a)):\tilde c \cdot 3:m
1896m2P62m P 6 2 m D_{3h}^3 47s (c:(a/a))\cdot m:3\cdot m
1906m2P62c P 6 2 c D_{3h}^4 42h (c:(a/a))\cdot m:3\cdot \tilde c
1916/m 2/m 2/mP6/mmm P 6/m 2/m 2/m D_{6h}^1 58s (c:(a/a))\cdot m:6\cdot m
1926/m 2/m 2/mP6/mcc P 6/m 2/c 2/c D_{6h}^2 48h (c:(a/a))\cdot m:6\cdot\tilde c
1936/m 2/m 2/mP63/mcm P 63/m 2/c 2/m D_{6h}^3 87a (c:(a/a))\cdot m:6_3\cdot\tilde c
1946/m 2/m 2/mP63/mmc P 63/m 2/m 2/c D_{6h}^4 88a (c:(a/a))\cdot m:6_3\cdot m

List of Cubic

| | | |}

(221) Caesium chloride. Different colors for the two atom types.
Cubic crystal system
Number Point group Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
19523P23 P 2 3 T^1 59s \left ( a:a:a\right ) :2/3 2o
19623F23 F 2 3 T^2 61s \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :2/3 1o
19723I23 I 2 3 T^3 60s \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :2/34oo
19823P213 P 21 3 T^4 89a \left ( a:a:a\right ) :2_1/31o/4
19923I213 I 21 3 T^5 90a \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :2_1/32o/4
2002/m 3Pm3 P 2/m 3 T_h^1 62s \left ( a:a:a\right ) \cdot m/ \tilde 6 4
2012/m 3Pn3 P 2/n 3 T_h^2 49h \left ( a:a:a\right ) \cdot \widetilde{ab} / \tilde 6 4+o
2022/m 3Fm3 F 2/m 3 T_h^3 64s \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) \cdot m/ \tilde 6 2
2032/m 3Fd3 F 2/d 3 T_h^4 50h \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) \cdot \tfrac{1}{2}\widetilde{ab} / \tilde 6 2+o
2042/m 3Im3 I 2/m 3 T_h^5 63s \left ( \tfrac{a+b+c}{2}/a:a:a\right ) \cdot m/\tilde 6 8−o
2052/m 3Pa3 P 21/a 3 T_h^6 91a \left ( a:a:a\right ) \cdot \tilde a /\tilde 6 2/4
2062/m 3Ia3 I 21/a 3 T_h^7 92a \left ( \tfrac{a+b+c}{2}/a:a:a\right ) \cdot \tilde a /\tilde 6 4/4
207432P432 P 4 3 2 O^1 68s \left ( a:a:a\right ) :4/3 4−o
208432P4232 P 42 3 2 O^2 98a \left ( a:a:a\right ) :4_2//3 4+
209432F432 F 4 3 2 O^3 70s \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/3 2−o
210432F4132 F 41 3 2 O^4 97a \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//3 2+
211432I432 I 4 3 2 O^5 69s \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4/3 8+o
212432P4332 P 43 3 2 O^6 94a \left ( a:a:a\right ) :4_3//3 2+/4
213432P4132 P 41 3 2 O^7 95a \left ( a:a:a\right ) :4_1//3 2+/4
214432I4132 I 41 3 2 O^8 96a \left ( \tfrac{a+b+c}{2}/:a:a:a\right ) :4_1//3 4+/4
21543mP43m P 4 3 m T_d^1 65s \left ( a:a:a\right ) :\tilde 4 /3 2o:2
21643mF43m F 4 3 m T_d^2 67s \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :\tilde 4 /3 1o:2
21743mI43m I 4 3 m T_d^3 66s \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :\tilde 4 /3 4o:2
21843mP43n P 4 3 n T_d^4 51h \left ( a:a:a\right ) :\tilde 4 //3 4o
21943mF43c F 4 3 c T_d^5 52h \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :\tilde 4 //3 2oo
22043mI43d I 4 3 d T_d^6 93a \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :\tilde 4 //3 4o/4
2214/m 3 2/mPm3m P 4/m 3 2/m O_h^1 71s \left ( a:a:a\right ) :4/\tilde 6 \cdot m 4:2
2224/m 3 2/mPn3n P 4/n 3 2/n O_h^2 53h \left ( a:a:a\right ) :4/\tilde 6 \cdot \widetilde{abc} 8oo
2234/m 3 2/mPm3n P 42/m 3 2/n O_h^3 102a \left ( a:a:a\right ) :4_2//\tilde 6 \cdot \widetilde{abc} 8o
2244/m 3 2/mPn3m P 42/n 3 2/m O_h^4 103a \left ( a:a:a\right ) :4_2//\tilde 6 \cdot m 4+:2
2254/m 3 2/mFm3m F 4/m 3 2/m O_h^5 73s \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/\tilde 6 \cdot m 2:2
2264/m 3 2/mFm3c F 4/m 3 2/c O_h^6 54h \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/\tilde 6 \cdot \tilde c 4−−
2274/m 3 2/mFd3m F 41/d 3 2/m O_h^7 100a \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//\tilde 6 \cdot m 2+:2
2284/m 3 2/mFd3c F 41/d 3 2/c O_h^8 101a \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//\tilde 6 \cdot \tilde c 4++
2294/m 3 2/mIm3m I 4/m 3 2/m O_h^9 72s \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4/\tilde 6 \cdot m8o:2
2304/m 3 2/mIa3d I 41/a 3 2/d O_h^{10} 99a \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4_1//\tilde 6 \cdot \tfrac{1}{2}\widetilde{abc} 8o/4

External links

Wikimedia Commons has media related to Space groups.
This article is issued from Wikipedia - version of the Thursday, April 14, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.