Lucas sequence

Not to be confused with the sequence of Lucas numbers, which is a particular Lucas sequence.

In mathematics, the Lucas sequences Un(P,Q) and Vn(P,Q) are certain constant-recursive integer sequences that satisfy the recurrence relation

xn = P xn−1Q xn−2

where P and Q are fixed integers. Any sequence satisfying this recurrence relation can be represented as a linear combination of the Lucas sequences Un(P,Q) and Vn(P,Q).

More generally, Lucas sequences Un(P,Q) and Vn(P,Q) represent sequences of polynomials in P and Q with integer coefficients.

Famous examples of Lucas sequences include the Fibonacci numbers, Mersenne numbers, Pell numbers, Lucas numbers, Jacobsthal numbers, and a superset of Fermat numbers. Lucas sequences are named after the French mathematician Édouard Lucas.

Recurrence relations

Given two integer parameters P and Q, the Lucas sequences of the first kind Un(P,Q) and of the second kind Vn(P,Q) are defined by the recurrence relations:

\begin{align}
U_0(P,Q)&=0, \\
U_1(P,Q)&=1, \\
U_n(P,Q)&=P\cdot U_{n-1}(P,Q)-Q\cdot U_{n-2}(P,Q) \mbox{  for }n>1,
\end{align}

and

\begin{align}

V_0(P,Q)&=2, \\
V_1(P,Q)&=P, \\
V_n(P,Q)&=P\cdot V_{n-1}(P,Q)-Q\cdot V_{n-2}(P,Q) \mbox{  for }n>1.
\end{align}

It is not hard to show that for n>0,

\begin{align}
U_n(P,Q)&=\frac{P\cdot U_{n-1}(P,Q) + V_{n-1}(P,Q)}{2},  \\
V_n(P,Q)&=\frac{(P^2-4Q)\cdot U_{n-1}(P,Q)+P\cdot V_{n-1}(P,Q)}{2}.  
\end{align}

The ordinary generating functions are


\sum_{n\ge 0} U_n(P,Q)z^n = \frac{z}{1-Pz+Qz^2};

\sum_{n\ge 0} V_n(P,Q)z^n = \frac{2-Pz}{1-Pz+Qz^2}.

Examples

Initial terms of Lucas sequences Un(P,Q) and Vn(P,Q) are given in the table:


\begin{array}{r|l|l}
n & U_n(P,Q) & V_n(P,Q)
\\
\hline
0 & 0 & 2
\\
1 & 1 & P
\\
2 & P & {P}^{2}-2Q
\\
3 & {P}^{2}-Q & {P}^{3}-3PQ
\\
4 & {P}^{3}-2PQ & {P}^{4}-4{P}^{2}Q+2{Q}^{2}
\\
5 & {P}^{4}-3{P}^{2}Q+{Q}^{2} & {P}^{5}-5{P}^{3}Q+5P{Q}^{2}
\\
6 & {P}^{5}-4{P}^{3}Q+3P{Q}^{2} & {P}^{6}-6{P}^{4}Q+9{P}^{2}{Q}^{2}-2{Q}^{3}
\end{array}

Algebraic relations

The characteristic equation of the recurrence relation for Lucas sequences U_n(P,Q) and V_n(P,Q) is:

x^2 - Px + Q=0 \,

It has the discriminant D=P^2 - 4Q and the roots:

a = \frac{P+\sqrt{D}}2\quad\text{and}\quad b = \frac{P-\sqrt{D}}2. \,

Thus:

a + b = P\, ,
a b = \frac{1}{4}(P^2 - D) = Q\, ,
a - b = \sqrt{D}\, .

Note that the sequence a^n and the sequence b^n also satisfy the recurrence relation. However these might not be integer sequences.

Distinct roots

When D\ne 0, a and b are distinct and one quickly verifies that

a^n = \frac{V_n + U_n \sqrt{D}}{2}
b^n = \frac{V_n - U_n \sqrt{D}}{2}.

It follows that the terms of Lucas sequences can be expressed in terms of a and b as follows

U_n= \frac{a^n-b^n}{a-b} = \frac{a^n-b^n}{ \sqrt{D}}
V_n=a^n+b^n \,

Repeated root

The case  D=0 occurs exactly when  P=2S \text{ and }Q=S^2 for some integer S so that a=b=S. In this case one easily finds that

U_n(P,Q)=U_n(2S,S^2) = nS^{n-1}\,
V_n(P,Q)=V_n(2S,S^2)=2S^n\,.

Additional sequences having the same discriminant

If the Lucas sequences U_n(P, Q) and V_n(P, Q) have discriminant D = P^2 - 4Q, then the sequences based on P_2 and Q_2 where

 P_2 = P + 2
 Q_2 = P + Q + 1

have the same discriminant: P_2^2 - 4Q_2 = (P+2)^2 - 4(P + Q + 1) = P^2 - 4Q = D.


Other relations

The terms of Lucas sequences satisfy relations that are generalizations of those between Fibonacci numbers F_n=U_n(1,-1) and Lucas numbers L_n=V_n(1,-1). For example:


\begin{array}{r|l}
\text{General case} & (P,Q) = (1,-1)
\\
\hline
(P^2-4Q) U_n = {V_{n+1} - Q V_{n-1}}=2V_{n+1}-P V_n  & 5F_n = {L_{n+1} + L_{n-1}}=2L_{n+1} - L_{n} 
\\
V_n = U_{n+1} - Q U_{n-1}=2U_{n+1}-PU_n  & L_n = F_{n+1} + F_{n-1}=2F_{n+1}-F_n 
\\
U_{2n} = U_n V_n  & F_{2n} = F_n L_n 
\\
V_{2n} = V_n^2 - 2Q^n  & L_{2n} = L_n^2 - 2(-1)^n 
\\
U_{n+m} = U_n U_{m+1} - Q U_m U_{n-1}=\frac{U_nV_m+U_mV_n}{2}  & F_{n+m} = F_n F_{m+1} + F_m F_{n-1}=\frac{F_nL_m+F_mL_n}{2} 
\\
V_{n+m} = V_n V_m - Q^m V_{n-m}  & L_{n+m} = L_n L_m - (-1)^m L_{n-m} 
\end{array}

Among the consequences is that U_{km}(P,Q) is a multiple of U_m(P,Q), i.e., the sequence (U_m(P,Q))_{m\ge1} is a divisibility sequence. This implies, in particular, that U_n(P,Q) can be prime only when n is prime. Another consequence is an analog of exponentiation by squaring that allows fast computation of U_n(P,Q) for large values of n. These facts are used in the Lucas–Lehmer primality test.

Carmichael's theorem states that all but finitely many of the terms in a Lucas sequence have a prime factor that does not divide any earlier term in the sequence (Yubuta 2001).

Specific names

The Lucas sequences for some values of P and Q have specific names:

Un(1,1) : Fibonacci numbers
Vn(1,1) : Lucas numbers
Un(2,1) : Pell numbers
Vn(2,1) : Companion Pell numbers or Pell-Lucas numbers
Un(1,2) : Jacobsthal numbers
Vn(1,2) : Jacobsthal-Lucas numbers
Un(3, 2) : Mersenne numbers 2n  1
Vn(3, 2) : Numbers of the form 2n + 1, which include the Fermat numbers (Yubuta 2001).
Un(x,1) : Fibonacci polynomials
Vn(x,1) : Lucas polynomials
Un(x+1, x) : Repunits base x
Vn(x+1, x) : xn + 1

Some Lucas sequences have entries in the On-Line Encyclopedia of Integer Sequences:

P\,Q\, U_n(P,Q)\, V_n(P,Q)\,
-1 3 A214733
1 -1 A000045 A000032
1 1 A128834 A087204
1 2 A107920
2 -1 A000129 A002203
2 1 A001477
2 2 A009545 A007395
2 3 A088137
2 4 A088138
2 5 A045873
3 -5 A015523 A072263
3 -4 A015521 A201455
3 -3 A030195 A172012
3 -2 A007482 A206776
3 -1 A006190 A006497
3 1 A001906 A005248
3 2 A000225 A000051
3 5 A190959
4 -3 A015530 A080042
4 -2 A090017
4 -1 A001076 A014448
4 1 A001353 A003500
4 2 A007070 A056236
4 3 A003462 A034472
4 4 A001787
5 -3 A015536
5 -2 A015535
5 -1 A052918 A087130
5 1 A004254 A003501
5 4 A002450 A052539

Applications

See also

Notes

  1. John Brillhart; Derrick Henry Lehmer; John Selfridge (April 1975). "New Primality Criteria and Factorizations of 2^m ± 1". Mathematics of Computation 29 (130): 620–647. doi:10.1090/S0025-5718-1975-0384673-1.
  2. P. J. Smith, M. J. J. Lennon (1993). "LUC: A new public key system". Proceedings of the Ninth IFIP Int. Symp. on Computer Security: 103–117.
  3. D. Bleichenbacher, W. Bosma, A. K. Lenstra (1995). "Some Remarks on Lucas-Based Cryptosystems" (PDF). Lecture Notes in Computer Science 963: 386–396. doi:10.1007/3-540-44750-4_31.

References

This article is issued from Wikipedia - version of the Saturday, April 23, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.