MTFMT

Mitochondrial methionyl-tRNA formyltransferase
Identifiers
Symbols MTFMT ; COXPD15; FMT1
External IDs OMIM: 611766 HomoloGene: 12320 GeneCards: MTFMT Gene
EC number 2.1.2.9
Orthologs
Species Human Mouse
Entrez 123263 69606
Ensembl ENSG00000103707 ENSMUSG00000059183
UniProt Q96DP5 Q9D799
RefSeq (mRNA) NM_139242 NM_027134
RefSeq (protein) NP_640335 NP_081410
Location (UCSC) Chr 15:
65 – 65.03 Mb
Chr 9:
65.44 – 65.45 Mb
PubMed search

Mitochondrial methionyl-tRNA formyltransferase is a protein that in humans is encoded by the MTFMT gene.[1]

The protein encoded by this nuclear gene localizes to the mitochondrion, where it catalyzes the formylation of methionyl-tRNA.[1] Recessive-type mutations in MTFMT have been shown to cause mitochondrial disease [2]

Model organisms

Model organisms have been used in the study of MTFMT function. A conditional knockout mouse line, called Mtfmttm1a(KOMP)Wtsi[7][8] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[9][10][11]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[5][12] Twenty six tests were carried out on mutant mice and two significant abnormalities were observed.[5] During gestation homozygous mutant embryos displayed lethal growth retardation and oedema. In a separate study, no homozygous animals were observed at weaning. The remaining tests were carried out on adult heterozygous mutant animals, but no further abnormalities were seen.[5]

References

  1. 1 2 "Entrez Gene: Mitochondrial methionyl-tRNA formyltransferase". Retrieved 2011-09-20.
  2. "Mutations in MTFMT Underlie a Human Disorder of Formylation Causing Impaired Mitochondrial Translation". Retrieved 2012-01-03.
  3. "Salmonella infection data for Mtfmt". Wellcome Trust Sanger Institute.
  4. "Citrobacter infection data for Mtfmt". Wellcome Trust Sanger Institute.
  5. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x.
  6. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  7. "International Knockout Mouse Consortium".
  8. "Mouse Genome Informatics".
  9. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  10. Dolgin E (June 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  11. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  12. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading

  • Takeuchi, N.; Kawakami, M.; Omori, A.; Ueda, T.; Spremulli, L. L.; Watanabe, K. (1998). "Mammalian mitochondrial methionyl-tRNA transformylase from bovine liver. Purification, characterization, and gene structure". The Journal of Biological Chemistry 273 (24): 15085–15090. doi:10.1074/jbc.273.24.15085. PMID 9614118. 


This article is issued from Wikipedia - version of the Friday, August 28, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.