Fluxon

In physics, a fluxon is a quantum of electromagnetic flux. The term may have any of several related meanings.

Superconductivity

In the context of superconductivity, in type II superconductors fluxons (also known as an Abrikosov vortices) can form when the applied field lies between B_{c_1} and B_{c_2}. The fluxon is a small whisker of normal phase surrounded by superconducting phase, and Supercurrents circulate around the normal core. The magnetic field through such a whisker and its neighborhood, which has size of the order of London penetration depth \lambda_L (~100 nm), is quantized because of the phase properties of the magnetic vector potential in quantum electrodynamics, see magnetic flux quantum for details.

In the context of long Superconductor-Insulator-Superconductor Josephson tunnel junctions, a fluxon (aka Josephson vortex) is made of circulating supercurrents and has no normal core in the tunneling barrier. Supercurrents circulate just around the mathematical center of a fluxon, which is situated with the (insulating) Josephson barrier. Again, the magnetic flux created by circulating supercurrents is equal to a magnetic flux quantum \Phi_0 (or less, if the superconducting electrodes of the Josephson junction are thinner than \lambda_L).

Magnetohydrodynamics modeling

In the context of numerical MHD modeling, a fluxon is a discretized magnetic field line, representing a finite amount of magnetic flux in a localized bundle in the model. Fluxon models are explicitly designed to preserve the topology of the magnetic field, overcoming numerical resistivity effects in Eulerian models.

References

    External links

    This article is issued from Wikipedia - version of the Wednesday, June 03, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.