Mahāvīra (mathematician)

Mahāvīra
Born India
Occupation Mathematician
Religion Jainism

Mahāvīra (or Mahaviracharya, "Mahavira the Teacher") was a 9th-century Jain mathematician from Mysore, India.[1][2][3] He was the author of Gaṇitasārasan̄graha (or Ganita Sara Samgraha, c. 850), which revised the Brāhmasphuṭasiddhānta.[1] He was patronised by the Rashtrakuta king Amoghavarsha.[4] He separated astrology from mathematics. It is the earliest Indian text entirely devoted to mathematics.[5] He expounded on the same subjects on which Aryabhata and Brahmagupta contended, but he expressed them more clearly. His work is a highly syncopated approach to algebra and the emphasis in much of his text is on developing the techniques necessary to solve algebraic problems.[6] He is highly respected among Indian mathematicians, because of his establishment of terminology for concepts such as equilateral, and isosceles triangle; rhombus; circle and semicircle.[7] Mahāvīra's eminence spread in all South India and his books proved inspirational to other mathematicians in Southern India.[8] It was translated into Telugu language by Pavuluri Mallana as Saar Sangraha Ganitam.[9]

He discovered algebraic identities like a3=a(a+b)(a-b) +b2(a-b) + b3.[3] He also found out the formula for nCr as [n(n-1)(n-2)...(n-r+1)]/r(r-1)(r-2)...2*1.[10] He devised formula which approximated area and perimeters of ellipses and found methods to calculate the square of a number and cube roots of a number.[11] He asserted that the square root of a negative number did not exist.[12]

Rules for decomposing fractions

Mahāvīra's Gaṇita-sāra-saṅgraha gave systematic rules for expressing a fraction as the sum of unit fractions.[13] This follows the use of unit fractions in Indian mathematics in the Vedic period, and the Śulba Sūtras' giving an approximation of √2 equivalent to 1 + \tfrac13 + \tfrac1{3\cdot4} - \tfrac1{3\cdot4\cdot34}.[13]

In the Gaṇita-sāra-saṅgraha (GSS), the second section of the chapter on arithmetic is named kalā-savarṇa-vyavahāra (lit. "the operation of the reduction of fractions"). In this, the bhāgajāti section (verses 55–98) gives rules for the following:[13]

rūpāṃśakarāśīnāṃ rūpādyās triguṇitā harāḥ kramaśaḥ /

dvidvitryaṃśābhyastāv ādimacaramau phale rūpe //

When the result is one, the denominators of the quantities having one as numerators are [the numbers] beginning with one and multiplied by three, in order. The first and the last are multiplied by two and two-thirds [respectively].
 1 = \frac1{1 \cdot 2} + \frac1{3} + \frac1{3^2} + \dots + \frac1{3^{n-2}} + \frac1{\frac23 \cdot 3^{n-1}}
1 = \frac1{2\cdot 3 \cdot 1/2} + \frac1{3 \cdot 4 \cdot 1/2} + \dots + \frac1{(2n-1) \cdot 2n \cdot 1/2} + \frac1{2n \cdot 1/2}
\frac1q = \frac{a_1}{q(q+a_1)} + \frac{a_2}{(q+a_1)(q+a_1+a_2)} + \dots + \frac{a_{n-1}}{q+a_1+\dots+a_{n-2})(q+a_1+\dots+a_{n-1})} + \frac{a_n}{a_n(q+a_1+\dots+a_{n-1})}
Choose an integer i such that \tfrac{q+i}{p} is an integer r, then write
 \frac{p}{q} = \frac{1}{r} + \frac{i}{r \cdot q}
and repeat the process for the second term, recursively. (Note that if i is always chosen to be the smallest such integer, this is identical to the greedy algorithm for Egyptian fractions.)
\frac1{n} = \frac1{p\cdot n} + \frac1{\frac{p\cdot n}{n-1}} where p is to be chosen such that \frac{p\cdot n}{n-1} is an integer (for which p must be a multiple of n-1).
\frac1{a\cdot b} = \frac1{a(a+b)} + \frac1{b(a+b)}
\frac{p}{q} = \frac{a}{\frac{ai+b}{p}\cdot\frac{q}{i}} + \frac{b}{\frac{ai+b}{p} \cdot \frac{q}{i} \cdot{i}} where i is to be chosen such that p divides ai + b

Some further rules were given in the Gaṇita-kaumudi of Nārāyaṇa in the 14th century.[13]

See also

List of Indian mathematicians

Notes

  1. 1 2 Pingree 1970.
  2. O'Connor & Robertson 2000.
  3. 1 2 Tabak 2009, p. 42.
  4. Puttaswamy 2012, p. 231.
  5. The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the ... by Clifford A. Pickover: page 88
  6. Algebra: Sets, Symbols, and the Language of Thought by John Tabak: p.43
  7. Geometry in Ancient and Medieval India by T. A. Sarasvati Amma: page 122
  8. Hayashi 2013.
  9. Census of the Exact Sciences in Sanskrit by David Pingree: page 388
  10. Tabak 2009, p. 43.
  11. Krebs 2004, p. 132.
  12. Selin 2008, p. 1268.
  13. 1 2 3 4 5 6 7 8 9 Kusuba 2004, pp. 497–516

References

This article is issued from Wikipedia - version of the Tuesday, March 15, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.