Mathematical constants and functions

A mathematical constant is a number, which has a special meaning for calculations. For example, the constant π means the ratio of the length of a circle's circumference to its diameter. This value is always the same for any circle.

Tables structure

Table of constants and functions

You can choose the order of the list by clicking on the name, value, OEIS, etc..

Value Name GraphicsSymbol LaTeX Formula OEIS Continued fractionYearWeb format
0.74048 04896 93061 04116 [Mw 1] Hermite constant Sphere packing 3D Kepler conjecture [1] {\mu_{_{K}}} \frac{\pi}{3\sqrt{2}} {\color{white}......\color{black}} The Flyspeck project, led by Thomas Hales, demonstrated in 2014 that Kepler's conjecture is true.[2]
 pi/(3 sqrt(2))
A093825 [0;1,2,1,5,1,4,2,2,1,1,2,2,2,6,1,1,1,5,2,1,1,1, ...] 1611 0.74048048969306104116931349834344894
22.45915 77183 61045 47342 pi^e [3]

\pi^{e} \pi^{e}
 pi^e
A059850 [22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...] 22.4591577183610454734271522045437350
2.80777 02420 28519 36522 [Mw 2] Fransén-Robinson constant [4]


{F} \int_{0}^\infty \frac{1}{\Gamma(x)}\, dx. = e + \int_0^\infty \frac{e^{-x}}{\pi^2 + \ln^2 x}\, dx
N[int[0 to ] {1/Gamma(x)}]
A058655 [2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...] 1978 2.80777024202851936522150118655777293
1.30568 6729 ≈ by Thomas & Dhar
1.30568 8 ≈ by McMullen [Mw 3]
Fractal dimension of the Apollonian packing of circles
[5]  · [6]

\varepsilon
A052483 [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] 1994
1998
1.305686729 ≈
1.305688 ≈
0.43828 29367 27032 11162

0.36059 24718 71385 485 i [Mw 4]

Infinite Tetration of i [7]


 {}^\infty {i}  \lim_{n \to \infty}  {}^n i  =  \lim_{n \to \infty}  \underbrace{i^{i^{\cdot^{\cdot^{i}}}}}_n
 i^i^i^i^i^i^...
C A077589
A077590
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...]
+ [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i
0.43828293672703211162697516355126482
+ 0.36059247187138548595294052690600 i
0.92883 58271 [Mw 5] Sum of the reciprocals of the averages of the twin prime pairs, JJGJJG B_1 \frac{1}{4}+\frac{1}{6}+\frac{1}{12}+\frac{1}{18}+\frac{1}{30}+\frac{1}{42}+\frac{1}{60}+\frac{1}{72}+\cdots
1/4 + 1/6 + 1/12 + 1/18 + 1/30 + 1/42 + 1/60 + 1/72 + ...
A241560 [0; 1, 13, 19, 4, 2, 3, 1, 1] 2014 0.928835827131
0.63092 97535 71457 43709 [Mw 6] Fractal dimension of the Cantor set [8] d_f(k)  \lim_{\varepsilon \to 0} \frac {\log N(\varepsilon)}{\log (1/\varepsilon)} = \frac{\log 2}{\log 3}
log(2)/log(3) 
 N[3^x=2]
T A102525 [0;1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] 0.63092975357145743709952711434276085
0.31830 98861 83790 67153 [Mw 7] Inverse of Pi, Ramanujan[9]


\frac{1}{\pi}  \frac{2\sqrt{2}}{9801} \sum^\infty_{n=0} \frac{(4n)!\,(1103+26390 \; n)}{(n!)^4 \, 396^{4n}}
 2 sqrt(2)/9801 
 * Sum[n=0 to ] 
 {((4n)!/n!^4)
  *(1103+ 26390n)
  / 396^(4n)}
T A049541 [0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] 0.31830988618379067153776752674502872
0.28878 80950 86602 42127 [Mw 8] Flajolet and Richmond [10]


{Q}  \prod_{n=1}^{\infty} \left(1 - \frac{1}{2^n}\right) = \left(1{-}\frac{1}{2^1}\right) \left(1{-}\frac{1}{2^2} \right)\left(1{-}\frac{1}{2^3} \right) ...
 prod[n=1 to ]
{1-1/2^n}
A048651 [0;3,2,6,4,1,2,1,9,2,1,2,3,2,3,5,1,2,1,1,6,1,...] 1992 0.28878809508660242127889972192923078
1.53960 07178 39002 03869 [Mw 9] Lieb's square ice constant [11] {W}_{2D} \lim_{n\to\infty}(f(n))^{n^{-2}}=\left(\frac{4}{3}\right)^\frac{3}{2}=\frac{8}{3\sqrt3}
 (4/3)^(3/2)
A A118273 [1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...] 1967 1.53960071783900203869106341467188655
0.20787 95763 50761 90854 [Mw 10] i^i [12]

i^i e^{-\frac{\pi}{2}}
 e^(-π/2)
T A049006 [0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...] 1746 0.20787957635076190854695561983497877
4.53236 01418 27193 80962 Van der Pauw constant  {\alpha} \frac{\pi}{\ln(2)}=\frac{\sum\limits_{n=0}^\infty \frac{4(-1)^n}{2n+1}}{\sum\limits_{n=1}^\infty \frac{(-1)^{n+1}}{n}}=\frac{\frac{4}{1}-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\cdots}{\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots}
 π/ln(2)
A163973 [4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...] 4.53236014182719380962768294571666681
0.76159 41559 55764 88811 [Mw 11] Hyperbolic tangent of 1 [13] {th} \, 1 -i \tan (i) = \frac{e-\frac{1}{e}}{e+\frac{1}{e}} = \frac{e^2-1}{e^2+1}
 (e-1/e)/(e+1/e)
T A073744 [0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...]
= [0;2p+1], p∈ℕ
0.76159415595576488811945828260479359
0.59017 02995 08048 11302 [Mw 12] Chebyshev constant [14] · [15]



{\lambda_{Ch}} \frac{\Gamma(\tfrac14)^2}{4 \pi^{3/2}} = \frac{4 (\tfrac14 !)^2}{\pi^{3/2}}
(Gamma(1/4)^2)
/(4 pi^(3/2))
A249205 [0;1,1,2,3,1,2,41,1,6,5,124,5,2,2,1,1,6,1,2,...] 0.59017029950804811302266897027924429
0.07077 60393 11528 80353

-0.68400 03894 37932 129 i [Ow 1]

MKB constant
[16] · [17] · [18]
 M_I \lim_{n\rightarrow \infty} \int_{1}^{2n} (-1)^x ~ \sqrt[x]{x} ~ dx = \int_{1}^{2n} e^{i \pi x} ~ x^{1/x} ~ dx
lim_(2n->) int[1 to 2n] 
 {exp(i*Pi*x)*x^(1/x) dx}
C A255727
A255728
[0;14,7,1,2,1,23,2,1,8,16,1,1,3,1,26,1,6,1,1, ...]
- [0;1,2,6,13,41,112,1,25,1,1,1,1,3,13,2,1, ...] i
2009 0.07077603931152880353952802183028200
-0.68400038943793212918274445999266 i
1.25992 10498 94873 16476 [Mw 13] Cube root of 2
Delian Constant
\sqrt[3]{2} \sqrt[3]{2}
2^(1/3)
A A002580 [1;3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,...] 1.25992104989487316476721060727822835
1.09317 04591 95490 89396 [Mw 14] Smarandache Constant[19] {S_1} \sum_{n=2}^\infty \frac1{\mu(n)!} {\color{white}....\color{black}} where μ(n) is the Kempner function A048799 [1;10,1,2,1,2,1,13,3,1,6,1,2,11,4,6,2,15,1,1,...] 1.09317045919549089396820137014520832
0.62481 05338 43826 58687
+ 1,30024 25902 20120 419 i
Generalized continued fraction
of i
 {{F}_{CG}}_{(i)}  \textstyle i{+}\frac i{i+\frac i{i+\frac i{i+\frac i{i+\frac i{i+\frac i{i+i{/...}}}}}}} =
 \sqrt{\frac{\sqrt{17}-1}{8}} + i \left(\tfrac12 {+} \sqrt{\frac{2}{\sqrt{17}-1}}\right)
i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(
...)))))))))))))))))))))
C A A156590

A156548
[i;1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,..]
= [0;1,i]
0.62481053384382658687960444744285144
+ 1.30024259022012041915890982074952 i
3.05940 74053 42576 14453 [Mw 15] [Ow 2] Double factorial
constant
{C_{_{n!!}}}  \sum_{n=0}^{\infty} \frac{1}{n!!} = \sqrt{e} \left[\frac {1}{\sqrt{2}}+\gamma(\tfrac12 ,\tfrac12)\right]
Sum[n=0 to ]{1/n!!}
A143280 [3;16,1,4,1,66,10,1,1,1,1,2,5,1,2,1,1,1,1,1,2,...] 3.05940740534257614453947549923327861
5.97798 68121 78349 12266 [Mw 16] Madelung Constant 2 [20]


{H}_{2}(2)  \pi \ln(3) \sqrt 3
Pi Log[3]Sqrt[3]
A086055 [5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...] 5.97798681217834912266905331933922774
0.91893 85332 04672 74178 [Mw 17] Raabe's formula [21]


{\zeta'(0)} \int\limits_a^{a+1}\log\Gamma(t)\,\mathrm dt = \tfrac12\log2\pi + a\log a - a,\quad a \ge 0
integral_a^(a+1)
{log(Gamma(x))+a-a log(a)} dx
A075700 [0;1,11,2,1,36,1,1,3,3,5,3,1,18,2,1,1,2,2,1,1,...] 0.91893853320467274178032973640561763
2.20741 60991 62477 96230 [Mw 18] Lower limit in the moving sofa problem [22] {S_{_{H}}}  \frac {\pi}{2} +\frac {2}{\pi} \,
pi/2 + 2/pi
T A086118 [2;4,1,4,1,1,2,5,1,11,1,1,5,1,6,1,3,1,1,1,1,7,...] 1967 2.20741609916247796230685674512980889
1.17628 08182 59917 50654 [Mw 19] Salem number,[23]

Lehmer's conjecture




{\sigma_{_{10}}} x^{10}+x^9-x^7-x^6-x^5-x^4-x^3+x+1
x^10+x^9-x^7-x^6 
 -x^5-x^4-x^3+x+1
A A073011 [1;5,1,2,17,1,7,2,1,1,2,4,7,2,2,1,1,15,1,1, ... 1983? 1.17628081825991750654407033847403505
0.37395 58136 19202 28805 [Mw 20] Artin constant [24] {C}_{Artin} \prod_{n=1}^{\infty} \left(1-\frac{1}{p_n(p_n-1)}\right)\quad p_n \scriptstyle \text{ = prime}
Prod[n=1 to ] 
 {1-1/(prime(n) 
 (prime(n)-1))}
A005596 [0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...] 1999 0.37395581361920228805472805434641641
0.42215 77331 15826 62702 [Mw 21] Volume of Reuleaux tetrahedron [25] {V_{_{R}}}  \frac{s^3}{12}(3\sqrt2 - 49 \, \pi + 162 \, \arctan\sqrt2)
(3*Sqrt[2] - 49*Pi + 162*ArcTan[Sqrt[2]])/12
A102888 [0;2,2,1,2,2,7,4,4,287,1,6,1,2,1,8,5,1,1,1,1, ...] 0.42215773311582662702336591662385075
2.82641 99970 67591 57554 [Mw 22] Murata Constant [26] {C_m}  \prod_{n = 1}^\infty \underset{p_{n}: \, {prime}}{ \Big(1 + \frac{1}{(p_n-1)^2}\Big)}
Prod[n=1 to ]
{1+1/(prime(n)
-1)^2}
A065485 [2;1,4,1,3,5,2,2,2,4,3,2,1,3,2,1,1,1,8,2,2,28,...] 2.82641999706759157554639174723695374
1.09864 19643 94156 48573 [Mw 23] Paris Constant  C_{Pa}  \prod_{n=2}^\infty \frac{2 \varphi}{\varphi+ \varphi_n}  \; ,\; \varphi {=} {Fi}  con  \varphi_n {=} \sqrt{1 {+} \varphi_{n {-} 1}}   y   \varphi_1 {=} 1 A105415 [1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...] 1.09864196439415648573466891734359621
2.39996 32297 28653 32223 [Mw 24]
Radians
Golden angle [27] {b} (4-2\,\Phi)\,\pi = (3-\sqrt{5})\,\pi = 137.5077640500378546 ...°
(4-2*Phi)*Pi
T A131988 [2;2,1,1,1087,4,4,120,2,1,1,2,1,1,7,7,2,11,...] 1907 2.39996322972865332223155550663361385
1.64218 84352 22121 13687 [Mw 25] Lebesgue constant L2 [28]


{L2} \frac{1}{5} + \frac{\sqrt{25-2\sqrt{5}}}{\pi} = \frac{1}{\pi} \int_0^\pi \frac {\left|\sin(\frac{5t}{2})\right|} {\sin(\frac{t}{2})} \,d t
1/5 + sqrt(25 - 
 2*sqrt(5))/Pi
T A226655 [1;1,1,1,3,1,6,1,5,2,2,3,1,2,7,1,3,5,2,2,1,1,...] 1910 1.64218843522212113687362798892294034
1.26408 47353 05301 11307 [Mw 26] Vardi constant[29]


{V_c} \frac{\sqrt{3}}{\sqrt{2}}\prod_{n\ge1}\left(1+{1\over(2e_n-1)^2}\right)^{\!1/2^{n+1}} A076393 [1;3,1,3,1,2,5,54,7,1,2,1,2,3,15,1,2,1,1,2,1,...] 1991 1.26408473530530111307959958416466949
1.5065918849 ± 0.0000000028 [Mw 27] Area of the Mandelbrot fractal [30] \gamma This is conjectured to be: \sqrt{6\pi -1} - e = 1.506591651\cdots A098403 [1;1,1,37,2,2,1,10,1,1,2,2,4,1,1,1,1,5,4,...] 1912 1.50659177 +/- 0.00000008

1.61111 49258 08376 736
111···111 27224 36828 [Mw 28]
183213 ones
Exponential factorial constant {S_{Ef}} \sum_{n=1}^{\infty} \frac{1}{n^{(n{-}1)^{\cdot^{\cdot^{\cdot^{2^1}}}}}} = 1 {+} \frac{1}{2^{1}} {+} \frac{1}{3^{2^{1}}} + \frac{1}{4^{3^{2^{1}}}} + \frac{1}{5^{4^{3^{2^{1}}}}} {+} \cdots T A080219 [1; 1, 1, 1, 1, 2, 1, 808, 2, 1, 2, 1, 14,...] 1.61111492580837673611111111111111111
1.11786 41511 89944 97314 [Mw 29] Goh-Schmutz constant [31]  C_{GS}  \int^\infty_0\frac{\log(s+1)}{e^s-1} \ ds =
\! - \! \sum_{n=1}^\infty \frac {e^n}{n} Ei(-n)
  • Ei: Exponential Integral
Integrate{
log(s+1)
/(E^s-1)}
A143300 [1;8,2,15,2,7,2,1,1,1,1,2,3,5,3,5,1,1,4,13,1,...] 1.11786415118994497314040996202656544
0.31813 15052 04764 13531

±1.33723 57014 30689 40 i [Ow 3]

Fixed points
Super-Logarithm[32] · Tetration
 {-W(-1)} \lim_{n\rightarrow \infty} f(x) = \underbrace{\log(\log(\log(\log(\cdots\log(\log(x)))))) \,\! }\atop {\log_s \text{ n times}}

For an initial value of x different to {\textstyle  0, 1, e, e^e, e^{e^e}
}, etc.

-W(-1)

where W=ProductLog
Lambert W function

C A059526
A059527
[-i;1 +2i,1+i,6-i,1+2i,-7+3i,2i,2,1-2i,-1+i,-, ...] 0.31813150520476413531265425158766451
-1.33723570143068940890116214319371 i
0.28016 94990 23869 13303 [Mw 30] Bernstein's constant [33]


{\beta}  \approx \frac {1}{2\sqrt {\pi}}
1/(2 sqrt(pi))
T A073001 [0;3,1,1,3,9,6,3,1,3,14,34,2,1,1,60,2,2,1,1,...] 1913 0.28016949902386913303643649123067200
0.66016 18158 46869 57392 [Mw 31] Twin Primes Constant [34]


{C}_{2} \prod_{p=3}^\infty \frac{p(p-2)}{(p-1)^2}
prod[p=3 to ]
{p(p-2)/(p-1)^2
A005597 [0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...] 1922 0.66016181584686957392781211001455577
1.22674 20107 20353 24441 [Mw 32] Fibonacci Factorial constant [35] F  \prod_{n = 1}^\infty \left(1 - \left( -\frac{1}{{\varphi}^2}\right)^n \right)=
\prod_{n = 1}^\infty \left(1 - \left( \frac{\sqrt{5}-3}{2}\right)^n \right)
prod[n=1 to ] 
 {1-((sqrt(5) -3)/2)^n}
A062073 [1;4,2,2,3,2,15,9,1,2,1,2,15,7,6,21,3,5,1,23,...] 1.22674201072035324441763023045536165
0.11494 20448 53296 20070 [Mw 33] Kepler–Bouwkamp constant [36] {\rho}  \prod_{n=3}^\infty \cos\left(\frac{\pi}{n} \right) = \cos\left(\frac{\pi}{3} \right) \cos\left(\frac{\pi}{4} \right) \cos\left(\frac{\pi}{5}\right) ...
prod[n=3 to ]
{cos(pi/n)}



A085365 [0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...] 0.11494204485329620070104015746959874
1.78723 16501 82965 93301 [Mw 34] Komornik–Loreti constant [37]


{q} 1 = \!\sum_{n=1}^\infty \frac{t_k}{q^k} \qquad \scriptstyle \text{Raiz real de} \displaystyle\prod_{n=0}^\infty \!\left (\! 1 {-} \frac{1}{q^{2^n}} \!\right ) \! {+} \frac{q{-}2}{q{-}1}=0

tk = Thue–Morse sequence

FindRoot[(prod[n=0 to ] 
{1-1/(x^2^n)}+(x-2)
/(x-1))= 0, {x, 1.7}, 
WorkingPrecision->30]
T A055060 [1;1,3,1,2,3,188,1,12,1,1,22,33,1,10,1,1,7,...] 1998 1.78723165018296593301327489033700839
3.30277 56377 31994 64655 [Mw 35] Bronze ratio [38]


{\sigma}_{\,Rr} \frac {3+\sqrt{13}}{2} = 1+\sqrt{3+\sqrt{3+\sqrt{3+\sqrt{3+\cdots}}}}
(3+sqrt 13)/2
A A098316 [3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...]
= [3;3,...]
3.30277563773199464655961063373524797
0.82699 33431 32688 07426 [Mw 36] Disk Covering [39] {C_5} {\frac{1}{{\sum\limits_{n=0}^\infty \frac{1}{\binom{3n+2}{2}}}}}=\frac{3\sqrt3}{2\pi}
3 Sqrt[3]/(2 Pi)
T A086089 [0;1,4,1,3,1,1,4,1,2,2,1,1,7,1,4,4,2,1,1,1,1,...] 1939
1949
0.82699334313268807426698974746945416
2.66514 41426 90225 18865 [Mw 37] Gelfond–Schneider constant [40]  G_{\,GS} 2^{\sqrt{2}}
2^sqrt{2}
T A007507 [2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...] 1934 2.66514414269022518865029724987313985
3.27582 29187 21811 15978 [Mw 38] Khinchin-Lévy constant [41] \gamma  e^{\pi^2/(12\ln2)}
e^(\pi^2/(12 ln(2))
A086702 [3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...] 1936 3.27582291872181115978768188245384386
0.52382 25713 89864 40645 [Mw 39] Chi Function
Hyperbolic cosine integral
{\operatorname{Chi()}}
\gamma + \int_0^x\frac{\cosh t-1}{t}\,dt

 \scriptstyle \gamma \, \text{= Euler–Mascheroni constant= 0.5772156649...}

Chi(x)
A133746 [0;1,1,9,1,172,1,7,1,11,1,1,2,1,8,1,1,1,1,1,...] 0.52382257138986440645095829438325566
1.13198 82487 943 [Mw 40] Viswanath constant[42] {C}_{Vi} \lim_{n \to \infty}|a_n|^\frac{1}{n}      where an = Fibonacci sequence
lim_(n->) 
|a_n|^(1/n)
T ? A078416 [1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...] 1997 1.1319882487943 ...
1.23370 05501 36169 82735 [Mw 41] Favard constant [43] \tfrac34\zeta(2)  \frac{\pi^2}{8} = \sum_{n = 0}^\infty \frac{1}{(2n-1)^2} = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\cdots
sum[n=1 to ]
{1/((2n-1)^2)}
T A111003 [1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...] 1902
a
1965
1.23370055013616982735431137498451889
2.50662 82746 31000 50241 Square root of 2 pi \sqrt{2 \pi} \sqrt{2 \pi} = \lim_{n \to \infty} \frac {n! \; e^n}{n^n \sqrt{n}}{\color{white}....\color{black}} Stirling's approximation
sqrt (2 pi)
T A019727 [2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...] 1692
a
1770
2.50662827463100050241576528481104525
4.13273 13541 22492 93846 Square root of Tau·e

 \sqrt{\tau e}  \sqrt{2 \pi e}
sqrt(2 pi e)
A019633 [4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...] 4.13273135412249293846939188429985264
0.97027 01143 92033 92574 [Mw 42] Lochs constant [44]


{\text{£}_{_{Lo}}}  \frac {6 \ln 2 \ln 10}{ \pi^2}
6*ln(2)*ln(10)/Pi^2
A086819 [0;1,32,1,1,1,2,1,46,7,2,7,10,8,1,71,1,37,1,1,...] 1964 0.97027011439203392574025601921001083
0.98770 03907 36053 46013 [Mw 43] Area bounded by the
eccentric rotation of
Reuleaux triangle [45]
\mathcal{T}_R  a^2 \cdot \left( 2\sqrt{3} + {\frac{\pi}{6}} - 3 \right)    where a= side length of the square
2 sqrt(3)+pi/6-3
T A066666 [0;1,80,3,3,2,1,1,1,4,2,2,1,1,1,8,1,2,10,1,2,...] 1914 0.98770039073605346013199991355832854
0.70444 22009 99165 59273 Carefree constant 2 [46]



\mathcal{C}_2  \underset{ p_n: \, {prime}}{\prod_{n = 1}^\infty \left(1 - \frac{1}{p_n(p_n+1)}\right)}
N[prod[n=1 to ] 
 {1 - 1/(prime(n)* 
 (prime(n)+1))}]
A065463 [0;1,2,2,1,1,1,1,4,2,1,1,3,703,2,1,1,1,3,5,1,...] 0.70444220099916559273660335032663721
1.84775 90650 22573 51225 [Mw 44] Connective constant [47][48] {\mu} \sqrt{2 + \sqrt{2}} \; = \lim_{n \rightarrow \infty} c_n^{1/n}

as a root of the polynomial : \; x ^ 4-4 x ^ 2 + 2=0

sqrt(2+sqrt(2))
A A179260 [1;1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,...] 1.84775906502257351225636637879357657
0.30366 30028 98732 65859 [Mw 45] Gauss-Kuzmin-Wirsing constant [49] {\lambda}_{2} \lim_{n \to \infty}\frac{F_n(x) - \ln(1 - x)}{(-\lambda)^n} = \Psi(x),

where \Psi(x) is an analytic function with \Psi(0) \!=\! \Psi(1) \!=\! 0.

A038517 [0;3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,...] 1973 0.30366300289873265859744812190155623
1.57079 63267 94896 61923 [Mw 46] Favard constant K1
Wallis product [50]
{\frac{\pi}{2}}  \prod_{n=1}^{\infty} \left(\frac{4n^2}{4n^2 - 1}\right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots
Prod[n=1 to ] 
 {(4n^2)/(4n^2-1)}
T A069196 [1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,1,5,1...] 1655 1.57079632679489661923132169163975144
1.60669 51524 15291 76378 [Mw 47] Erdős–Borwein constant[51][52]


{E}_{\,B} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\frac{1}{2^{mn}} =\sum_{n=1}^{\infty}\frac{1}{2^n-1} = \frac{1}{1} \! + \! \frac{1}{3} \! + \! \frac{1}{7} \! + \! \frac{1}{15} \! + \! ...
sum[n=1 to ]
{1/(2^n-1)}
I A065442 [1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...] 1949 1.60669515241529176378330152319092458
1.61803 39887 49894 84820 [Mw 48] Phi, Golden ratio [53] {\varphi} \frac{1 + \sqrt{5}}{2} = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}
(1+5^(1/2))/2
A A001622 [0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]
= [0;1,...]
-300 ~ 1.61803398874989484820458683436563811
1.64493 40668 48226 43647 [Mw 49] Riemann Function Zeta(2) {\zeta}(\,2)  \frac{\pi^2}{6} = \sum_{n=1}^\infty\frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots
Sum[n=1 to ]
{1/n^2}
T A013661 [1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] 1826
to
1866
1.64493406684822643647241516664602519
1.73205 08075 68877 29352 [Mw 50] Theodorus constant[54] \sqrt{3}  \sqrt[3]{3 \,\sqrt[3]{3 \, \sqrt[3]{3 \,\sqrt[3]{3 \,\sqrt[3]{3  \,\cdots}}}}}
(3(3(3(3(3(3(3) 
 ^1/3)^1/3)^1/3) 
 ^1/3)^1/3)^1/3) 
 ^1/3 ...
A A002194 [1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...]
= [1;1,2,...]
-465
to
-398
1.73205080756887729352744634150587237
1.75793 27566 18004 53270 [Mw 51] Kasner number {R} \sqrt{1 + \sqrt{2 + \sqrt{3 + \sqrt{4 + \cdots}}}}
Fold[Sqrt[#1+#2]
 &,0,Reverse 
 [Range[20]]]
A072449 [1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] 1878
a
1955
1.75793275661800453270881963821813852
2.29558 71493 92638 07403 [Mw 52] Universal parabolic constant [55]  {P}_{\,2} \ln(1 + \sqrt2) + \sqrt2 \; = \; \operatorname{arcsinh}(1)+\sqrt{2}
ln(1+sqrt 2)+sqrt 2
T A103710 [2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,7,2,1,...] 2.29558714939263807403429804918949038
1.78657 64593 65922 46345 [Mw 53] Silverman constant[56]



{\mathcal{S}_{_{m}}}  \sum_{n = 1}^\infty  \frac {1}{\phi (n)\sigma_1(n)}   = \underset{ p_n: \, {prime}}{ \prod_{n = 1}^\infty \left( 1 + \sum_{k = 1}^\infty  \frac {1}{p_n^{2k} - p_n^{k-1}}\right)}
ø() = Euler's totient function, σ1() = Divisor function.
Sum[n=1 to ] 
 {1/[EulerPhi(n) 
 DivisorSigma(1,n)]}
A093827 [1;1,3,1,2,5,1,65,11,2,1,2,13,1,4,1,1,1,2,5,4,...] 1.78657645936592246345859047554131575
2.59807 62113 53315 94029 [Mw 54] Area of the regular hexagon with side equal to 1 [57] \mathcal{A}_6  \frac{3 \sqrt{3}}{2}
3 sqrt(3)/2
A A104956 [2;1,1,2,20,2,1,1,4,1,1,2,20,2,1,1,4,1,1,2,20,...]
[2;1,1,2,20,2,1,1,4]
2.59807621135331594029116951225880855
0.66131 70494 69622 33528 [Mw 55] Feller-Tornier
constant [58]




{\mathcal{C}_{_{FT}}} \underset{p_n: \, {prime}}{\frac{1}{2}\prod_{n = 1}^\infty \left(1-\frac{2}{p_n^2}\right){+}\frac{1}{2}} =\frac{3}{\pi^2}\prod_{n = 1}^\infty \left(1-\frac{1}{p_n^2-1}\right){+}\frac{1}{2}
[prod[n=1 to ] 
 {1-2/prime(n)^2}] 
 /2 + 1/2
T ? A065493 [0;1,1,1,20,9,1,2,5,1,2,3,2,3,38,8,1,16,2,2,...] 1932 0.66131704946962233528976584627411853
1.46099 84862 06318 35815 [Mw 56] Baxter's
Four-coloring
constant [59]
Mapamundi Four-Coloring \mathcal{C}^2  \prod_{n = 1}^\infty \frac{(3n-1)^2}{(3n-2)(3n)}  = \frac {3}{4\pi^2} \,\Gamma \left(\frac {1}{3}\right)^3
Γ() = Gamma function
3×Gamma(1/3) 
 ^3/(4 pi^2)
A224273 [1;2,5,1,10,8,1,12,3,1,5,3,5,8,2,1,23,1,2,161,...] 1970 1.46099848620631835815887311784605969
1.92756 19754 82925 30426 [Mw 57] Tetranacci constant

\mathcal{T} Positive root of : \;\; x^4-x^3-x^2-x-1=0
Root[x+x^-4-2=0]
A A086088 [1;1,12,1,4,7,1,21,1,2,1,4,6,1,10,1,2,2,1,7,1,...] 1.92756197548292530426190586173662216
1.00743 47568 84279 37609 [Mw 58] DeVicci's tesseract constant {f_{(3,4)}} The largest cube that can pass through in an 4D hypercube.

Positive root of : \;\; 4x^4{-}28x^3{-}7x^2{+}16x{+}16=0

Root[4*x^8-28*x^6 
 -7*x^4+16*x^2+16 
 =0]
A A243309 [1;134,1,1,73,3,1,5,2,1,6,3,11,4,1,5,5,1,1,48,...] 1.00743475688427937609825359523109914
1.70521 11401 05367 76428 [Mw 59] Niven's constant [60] {C} 1+\sum_{n = 2}^\infty \left(1-\frac{1}{\zeta(n)} \right)
1+ Sum[n=2 to ]
{1-(1/Zeta(n))}
A033150 [1;1,2,2,1,1,4,1,1,3,4,4,8,4,1,1,2,1,1,11,1,...] 1969 1.70521114010536776428855145343450816
0.60459 97880 78072 61686 [Mw 60] Relationship among the area of an equilateral triangle and the inscribed circle.  \frac{\pi}{3 \sqrt 3}
 \sum_{n = 1}^\infty \frac{1}{n{2n \choose n}} =  1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{5} + \frac{1}{7} - \frac{1}{8} + \cdots
Dirichlet series
Sum[1/(n 
Binomial[2 n, n])
, {n, 1, }]
T A073010 [0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,6,6,...] 0.60459978807807261686469275254738524
1.15470 05383 79251 52901 [Mw 61] Hermite constant [61]  \gamma_{_{2}}  \frac{2}{\sqrt{3}} = \frac{1}{\cos \, (\frac{\pi}{6})}
2/sqrt(3)
A 1+
A246724
[1;6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...]
[1;6,2]
1.15470053837925152901829756100391491
0.41245 40336 40107 59778 [Mw 62] Prouhet–Thue–Morse constant [62]  \tau  \sum_{n=0}^{\infty} \frac{t_n}{2^{n+1}}    where  {t_n} is the Thue–Morse sequence  and
Where  \tau(x) = \sum_{n=0}^{\infty} (-1)^{t_n} \, x^n  = \prod_{n=0}^{\infty} ( 1 - x^{2^n} )
T A014571 [0;2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,2,4,1,1,...] 0.41245403364010759778336136825845528
0.58057 75582 04892 40229 [Mw 63] Pell constant [63]


{\mathcal{P}_{_{Pell}}} 1- \prod_{n = 0}^\infty \left(1-\frac{1}{2^{2n+1}}\right)
N[1-prod[n=0 to ] 
 {1-1/(2^(2n+1)}]
T ? A141848 [0;1,1,2,1,1,1,1,14,1,3,1,1,6,9,18,7,1,27,1,1,...] 0.58057755820489240229004389229702574
0.66274 34193 49181 58097 [Mw 64] Laplace limit [64] {\lambda}  \frac{ x \; e^\sqrt{x^2+1}}{\sqrt{x^2+1}+1} = 1
(x e^sqrt(x^2+1))
/(sqrt(x^2+1)+1) = 1
A033259 [0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,1,1,2,1601,...] 1782 ~ 0.66274341934918158097474209710925290
0.17150 04931 41536 06586 [Mw 65] Hall-Montgomery Constant [65]  {{\delta}_{_{0}}}  1 + \frac{\pi^2}{6} +2 \; \mathrm{Li}_2 \left(-\sqrt{e}\;\right) 
\quad \mathrm{Li}_2 \, \scriptstyle \text{= Dilogarithm integral}
1 + Pi^2/6 + 
2*PolyLog[2, -Sqrt[E]]
A143301 [0;5,1,4,1,10,1,1,11,18,1,2,19,14,1,51,1,2,1,...] 0.17150049314153606586043997155521210
1.55138 75245 48320 39226 [Mw 66] Calabi triangle constant [66]  {C_{_{CR}}}  {1 \over 3} + {(-23 + 3i \sqrt{237})^{\tfrac13} \over 3 \cdot 2^{\tfrac23}} + {11 \over 3 (2 (-23 + 3i \sqrt{237}))^{\tfrac13}}
FindRoot[ 
 2x^3-2x^2-3x+2 
 ==0, {x, 1.5}, 
 WorkingPrecision->40]
A A046095 [1;1,1,4,2,1,2,1,5,2,1,3,1,1,390,1,1,2,11,6,2,...] 1946 ~ 1.55138752454832039226195251026462381
1.22541 67024 65177 64512 [Mw 67] Gamma(3/4) [67]


\Gamma(\tfrac34) \left(-1+\frac{3}{4}\right)! = \left(-\frac{1}{4}\right)!
(-1+3/4)!
A068465 [1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,8,3,...] 1.22541670246517764512909830336289053
1.20205 69031 59594 28539 [Mw 68] Apéry's constant [68] \zeta(3) \sum_{n=1}^\infty\frac{1}{n^3} = \frac{1}{1^3}+\frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{5^3} + \cdots=

\frac{1}{2} \sum_{n=1}^\infty \frac{H_n}{n^2} =
\frac{1}{2} \sum_{i=1}^\infty \sum_{j=1}^\infty \frac{1}{ij(i{+}j)}=
\!\!\int \limits_0^1 \!\!\int \limits_0^1 \!\!\int \limits_0^1 \frac{\mathrm{d}x \mathrm{d}y \mathrm{d}z}{1 - xyz}

Sum[n=1 to ]
{1/n^3}
I A010774 [1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,...] 1979 1.20205690315959428539973816151144999
0.91596 55941 77219 01505 [Mw 69] Catalan's constant[69][70][71]


{C}  \int_0^1 \!\! \int_0^1 \!\! \frac{1}{1{+}x^2 y^2}\, dx \,dy
= \! \sum_{n = 0}^\infty \! \frac{(-1)^n}{(2n{+}1)^2} \!
= \! \frac{1}{1^2}{-}\frac{1}{3^2}{+}{\cdots}
Sum[n=0 to ]
{(-1)^n/(2n+1)^2}
T A006752 [0;1,10,1,8,1,88,4,1,1,7,22,1,2,3,26,1,11,...] 1864 0.91596559417721901505460351493238411
0.78539 81633 97448 30961 [Mw 70] Beta(1) [72] {\beta}(1) \frac{\pi}{4} = \sum_{n = 0}^\infty \frac{(-1)^n}{2n+1} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots
Sum[n=0 to ]
{(-1)^n/(2n+1)}
T A003881 [0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] 1805
to
1859
0.78539816339744830961566084581987572
0.00131 76411 54853 17810 [Mw 71] Heath-Brown–Moroz constant[73] {C_{_{HBM}}} \underset{p_n: \, {prime}}{\prod_{n = 1}^\infty \left(1-\frac{1}{p_n}\right)^7\left(1+\frac{7p_n+1}{p_n^2}\right)}
N[prod[n=1 to ] 
 {((1-1/prime(n))^7) 
 *(1+(7*prime(n)+1) 
 /(prime(n)^2))}]
T ? A118228 [0;758,1,13,1,2,3,56,8,1,1,1,1,1,143,1,1,1,2,...] 0.00131764115485317810981735232251358
0.56755 51633 06957 82538 Module of
Infinite
Tetration of i
|{}^\infty {i} |  \lim_{n \to \infty} \left | {}^n i \right |  =\left | \lim_{n \to \infty}  \underbrace{i^{i^{\cdot^{\cdot^{i}}}}}_n  \right |
Mod(i^i^i^...)
A212479 [0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] 0.56755516330695782538461314419245334
0.78343 05107 12134 40705 [Mw 72] Sophomore's dream1
J.Bernoulli [74]
{I}_{1} \int_0^1 \! x^{x}\,dx = \sum_{n = 1}^\infty \frac{(-1)^{n+1}}{n^n} = \frac{1}{1^1} - \frac{1}{2^2} + \frac{1}{3^3} - {\cdots}
Sum[n=1 to ] 
 {-(-1)^n /n^n}
A083648 [0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,2,1,14,...] 1697 0.78343051071213440705926438652697546
1.29128 59970 62663 54040 [Mw 73] Sophomore's dream2
J.Bernoulli [75]
{I}_{2}  \int_0^1 \! \frac{1}{x^x}\, dx 
= \sum_{n = 1}^\infty \frac{1}{n^n} =  \frac{1}{1^1} + \frac{1}{2^2} + \frac{1}{3^3}  + \frac{1}{4^4}+ \cdots
Sum[n=1 to ] 
 {1/(n^n)}
A073009 [1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,...] 1697 1.29128599706266354040728259059560054
0.70523 01717 91800 96514 [Mw 74] Primorial constant
Sum of the product of inverse of primes [76]
{P_\#}  \underset{ p_n: \, {prime}}{\sum_{n = 1}^\infty \frac{1}{p_n\#} =  \frac{1}{2} + \frac{1}{6} + \frac{1}{30} + \frac{1}{210} + ... = \sum_{k = 1}^\infty \prod_{n = 1}^k \frac {1}{p_n}}
Sum[k=1 to ] 
 (prod[n=1 to k] 
  {1/prime(n)})
I A064648 [0;1,2,2,1,1,4,1,2,1,1,6,13,1,4,1,16,6,1,1,4,...] 0.70523017179180096514743168288824851
0.14758 36176 50433 27417 [Mw 75] Plouffe's gamma constant [77] {{C}}  \frac{1}{\pi} \arctan {\frac{1}{2}} 
= \frac{1}{\pi}\sum_{n=0}^\infty \frac {(-1)^n}{(2^{2n+1})(2n+1)}

= \frac{1}{\pi} \left( \frac {1}{2} - \frac {1}{3 \cdot 2^3} +\frac {1}{5 \cdot 2^5} -\frac {1}{7 \cdot 2^7} +\cdots 
\right)
Arctan(1/2)/pi
T A086203 [0;6,1,3,2,5,1,6,5,3,1,1,2,1,1,2,3,1,2,3,2,2,...] 0.14758361765043327417540107622474052
0.15915 49430 91895 33576 [Mw 76] Plouffe's A constant [78]


{A}  \frac{1}{2 \pi}
1/(2 pi)
T A086201 [0;6,3,1,1,7,2,146,3,6,1,1,2,7,5,5,1,4,1,2,42,...] 0.15915494309189533576888376337251436
0.29156 09040 30818 78013 [Mw 77] Dimer constant 2D,
Domino tiling[79][80]
{\frac{C}{\pi}}

C=Catalan

 \int\limits_{-\pi}^{\pi} \frac{\cosh^{-1}\left(\frac{\sqrt{\cos(t)+3}}{\sqrt2}\right)}{4\pi}\,dt
N[int[-pi to pi]
{arccosh(sqrt(
cos(t)+3)/sqrt(2))
/(4*Pi)dt}]
A143233 [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] 0.29156090403081878013838445646839491
0.49801 56681 18356 04271

0.15494 98283 01810 68512 i

Factorial(i)[81] {i}\,!  \Gamma (1+i) = i \, \Gamma (i) = \int\limits_0^\infty \frac{t^i}{e^t} \mathrm{d} t
Integral_0^ 
 t^i/e^t dt
C A212877
A212878
[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...]
- [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i
0.49801566811835604271369111746219809
- 0.15494982830181068512495513048388 i
2.09455 14815 42326 59148 [Mw 78] Wallis Constant  W  \sqrt[3]{\frac{45-\sqrt{1929}}{18}}+\sqrt[3]{\frac{45+\sqrt{1929}}{18}}
(((45-sqrt(1929)) 
 /18))^(1/3)+ 
 (((45+sqrt(1929)) 
 /18))^(1/3)
A A007493 [2;10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,...] 1616
to
1703
2.09455148154232659148238654057930296
0.72364 84022 98200 00940 [Mw 79] Sarnak constant {C_{sa} }  \prod_{p>2} \Big(1 - \frac{p+2}{p^3}\Big)
N[prod[k=2 to ] 
 {1-(prime(k)+2) 
 /(prime(k)^3)}]
T ? A065476 [0;1,2,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,8,2,1,1,...] 0.72364840229820000940884914980912759
0.63212 05588 28557 67840 [Mw 80] Time constant [82] {\tau}   \lim_{n \to \infty} 1-\frac {!n}{n!}=\lim_{n \to \infty} P(n)= \int_{0}^{1}e^{-x}dx = 1{-}\frac{1}{e} =

 \sum \limits_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!} =
\frac{1}{1!}{-}\frac{1}{2!}{+}\frac{1}{3!}{-}\frac{1}{4!}{+}\frac{1}{5!}{-}\frac{1}{6!}{+}\cdots

lim_(n->) (1- !n/n!) 
 !n=subfactorial
T A068996 [0;1,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [0;1,1,1,2n], n∈ℕ
0.63212055882855767840447622983853913
1.04633 50667 70503 18098 Minkowski-Siegel mass constant [83]  F_1  \prod_{n=1}^{\infty} \frac{n!}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n \sqrt[12]{1+\tfrac1{n}}}
N[prod[n=1 to ] 
 n! /(sqrt(2*Pi*n) 
 *(n/e)^n *(1+1/n) 
 ^(1/12))]
A213080 [1;21,1,1,2,1,1,4,2,1,5,7,2,1,20,1,1,1134,3,..] 1867
1885
1935
1.04633506677050318098095065697776037
5.24411 51085 84239 62092 [Mw 81] Lemniscate Constant [84]
2\varpi \frac{[\Gamma(\tfrac14)]^2}{\sqrt{2 \pi}} = 
4\int^1_0 \frac{dx}{\sqrt{(1-x^2)(2-x^2)}}
Gamma[ 1/4 ]^2 
 /Sqrt[ 2 Pi ]
A064853 [5;4,10,2,1,2,3,29,4,1,2,1,2,1,2,1,4,9,1,4,1,2,...] 1718 5.24411510858423962092967917978223883
0.66170 71822 67176 23515 [Mw 82] Robbins constant [85] \Delta(3)  \frac{4 \! + \! 17\sqrt2 \! -6 \sqrt3 \! -7\pi}{105} \! + \! \frac{\ln(1 \! + \! \sqrt2)}{5} \! + \! \frac{2\ln(2 \! + \! \sqrt3)}{5}
(4+17*2^(1/2)-6 
 *3^(1/2)+21*ln(1+ 
 2^(1/2))+42*ln(2+ 
 3^(1/2))-7*Pi)/105
A073012 [0;1,1,1,21,1,2,1,4,10,1,2,2,1,3,11,1,331,1,4,...] 1978 0.66170718226717623515583113324841358
1.30357 72690 34296 39125 [Mw 83] Conway constant [86] {\lambda}  \begin{smallmatrix}
x^{71}\quad\ -x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\\
-x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\\
+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\\
-12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\\
-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}\quad\ -7x^{21}+9x^{20}\\
+3x^{19}\!-4x^{18}\!-10x^{17}\!-7x^{16}\!+12x^{15}\!+7x^{14}\!+2x^{13}\!-12x^{12}\!-4x^{11}\!-2x^{10}\\
+5x^{9}+x^{7}\quad\ -7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6\ =\ 0 \quad\quad\quad
\end{smallmatrix} A A014715 [1;3,3,2,2,54,5,2,1,16,1,30,1,1,1,2,2,1,14,1,...] 1987 1.30357726903429639125709911215255189
1.18656 91104 15625 45282 [Mw 84] Khinchin–Lévy constant[87]


{\beta} \frac {\pi^2}{12\,\ln 2}
pi^2 /(12 ln 2)
A100199 [1;5,2,1,3,1,1,28,18,16,3,2,6,2,6,1,1,5,5,9,...] 1935 1.18656911041562545282172297594723712
0.83564 88482 64721 05333 Baker constant [88] \beta_3 \int^1_0 \frac{{\mathrm{d} t}}{1 + t^3}=\sum_{n = 0}^\infty \frac{(-1)^n}{3n+1}= \frac{1}{3}\left(\ln 2+\frac{\pi}{\sqrt{3}}\right)
Sum[n=0 to ] 
 {((-1)^(n))/(3n+1)}
A113476 [0;1,5,11,1,4,1,6,1,4,1,1,1,2,1,3,2,2,2,2,1,3,...] 0.83564884826472105333710345970011076
23.10344 79094 20541 6160 [Mw 85] Kempner Serie(0) [89] {K_0} 1{+}\frac12{+}\frac13{+}\cdots{+}\frac19{+}\frac1{11}{+}\cdots{+}\frac1{19}{+}\frac1{21}{+}\cdots

{+}\frac1{99}{+}\frac1{111}{+}\cdots{+}\frac1{119}{+}\frac1{121}{+}\cdots

(Excluding all denominators containing 0.)

1+1/2+1/3+1/4+1/5
+1/6+1/7+1/8+1/9
+1/11+1/12+1/13
+1/14+1/15+...
A082839 [23;9,1,2,3244,1,1,5,1,2,2,8,3,1,1,6,1,84,1,...] 23.1034479094205416160340540433255981
0.98943 12738 31146 95174 [Mw 86] Lebesgue constant [90] {C_1} \lim_{n\to\infty}\!\! \left(\!{L_n{-}\frac{4}{\pi^2}\ln(2n{+}1)}\!\!\right)\!{=}
\frac{4}{\pi^2}\!\left({\sum_{k=1}^\infty \!\frac{2\ln k}{4k^2{-}1}}
{-}\frac{\Gamma'(\tfrac12)}{\Gamma(\tfrac12)}\!\!\right)
4/pi^2*[(2 
 Sum[k=1 to ] 
 {ln(k)/(4*k^2-1)}) 
 -poligamma(1/2)]
A243277 [0;1,93,1,1,1,1,1,1,1,7,1,12,2,15,1,2,7,2,1,5,...] ? 0.98943127383114695174164880901886671
0.19452 80494 65325 11361 [Mw 87] 2nd du Bois-Reymond constant [91] {C_2} \frac{e^2-7}{2} = \int_0^\infty \left|{\frac{d}{dt}\left(\frac{\sin t}{t}\right)^n}\right|\,dt-1
(e^2-7)/2
T A062546 [0;5,7,9,11,13,15,17,19,21,23,25,27,29,31,...]
= [0;2p+3], p∈ℕ
0.19452804946532511361521373028750390
0.78853 05659 11508 96106 [Mw 88] Lüroth constant[92]
C_L \sum_{n = 2}^\infty \frac{\ln\left(\frac{n}{n-1}\right)}{n}
Sum[n=2 to ] 
 log(n/(n-1))/n
A085361 [0;1,3,1,2,1,2,4,1,127,1,2,2,1,3,8,1,1,2,1,16,...] 0.78853056591150896106027632216944432
1.18745 23511 26501 05459 [Mw 89] Foias constant α [93]


F_\alpha  x_{n+1} = \left( 1 + \frac{1}{x_n} \right)^n\text{ for }n=1,2,3,\ldots

Foias constant is the unique real number such that if x1 = α then the sequence diverges to ∞. When x1 = α, \, \lim_{n\to\infty} x_n \tfrac{\log n}{n} = 1

A085848 [1;5,2,1,81,3,2,2,1,1,1,1,1,6,1,1,3,1,1,4,3,2,...] 2000 1.18745235112650105459548015839651935
2.29316 62874 11861 03150 [Mw 90] Foias constant β F_\beta  x^{x+1} = (x+1)^x
x^(x+1) 
 = (x+1)^x
A085846 [2;3,2,2,3,4,2,3,2,130,1,1,1,1,1,6,3,2,1,15,1,...] 2000 2.29316628741186103150802829125080586
0.82246 70334 24113 21823 [Mw 91] Nielsen-Ramanujan constant [94]


\frac{{\zeta}(2)}{2}  \frac{\pi^2}{12} = \sum_{n=1}^\infty\frac{(-1)^{n+1}}{n^2} = \frac{1}{1^2} {-} \frac{1}{2^2} {+} \frac{1}{3^2} {-} \frac{1}{4^2} {+} \frac{1}{5^2} {-} \cdots
Sum[n=1 to ]
{((-1)^(n+1))/n^2}
T A072691 [0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4...] 1909 0.82246703342411321823620758332301259
0.69314 71805 59945 30941 [Mw 92] Natural logarithm of 2 [95] Ln(2)  \sum_{n=1}^\infty \frac{1}{n 2^n} = 
\sum_{n=1}^\infty \frac{({-}1)^{n+1}}{n} 
= \frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+{\cdots}
Sum[n=1 to ]
{(-1)^(n+1)/n}
T A002162 [0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,...] 1550
to
1617
0.69314718055994530941723212145817657
0.47494 93799 87920 65033 [Mw 93] Weierstrass constant [96]


\sigma(\tfrac12)  \frac{e^{\frac{\pi}{8}}\sqrt{\pi}}{4 \cdot 2^{3/4} {(\frac {1}{4}!)^2}}
(E^(Pi/8) Sqrt[Pi])
 /(4 2^(3/4) (1/4)!^2)
A094692 [0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,4,8,6...] 1872 ? 0.47494937998792065033250463632798297
0.57721 56649 01532 86060 [Mw 94] Euler–Mascheroni constant {\gamma}  \sum_{n=1}^\infty \sum_{k=0}^\infty \frac{(-1)^k}{2^n+k} 
 = \sum_{n=1}^\infty \left(\frac{1}{n} -\ln \left(1+\frac{1}{n}\right)\right)

= \int_{0}^{1} -\ln \left(\ln \frac{1}{x}\right)\, dx = -\Gamma'(1) = -\Psi(1)

sum[n=1 to ]
|sum[k=0 to ]
{((-1)^k)/(2^n+k)}
A001620 [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,...] 1735 0.57721566490153286060651209008240243
1.38135 64445 18497 79337 Beta, Kneser-Mahler polynomial constant[97] \beta  e^{^{\textstyle{\frac{2}{\pi}} \displaystyle{\int_0^{\frac{\pi}{3}}} \textstyle{t \tan t\ dt}}} = 
         e^{^{\displaystyle{\,\int_{\frac{-1}{3}}^{\frac{1}{3}}} \textstyle{\,\ln \lfloor 1+e^{2 \pi i t}} \rfloor dt}}
e^((PolyGamma(1,4/3) 
 - PolyGamma(1,2/3) 
 +9)/(4*sqrt(3)*Pi))
A242710 [1;2,1,1,1,1,1,4,1,139,2,1,3,5,16,2,1,1,7,2,1,...] 1963 1.38135644451849779337146695685062412
1.35845 62741 82988 43520 [Mw 95] Golden Spiral  c  \varphi ^ \frac{2}{\pi} = \left(\frac{1 + \sqrt{5}}{2}\right)^{\frac{2}{\pi}}
GoldenRatio^(2/pi)
A212224 [1;2,1,3,1,3,10,8,1,1,8,1,15,6,1,3,1,1,2,3,1,1,...] 1.35845627418298843520618060050187945
0.57595 99688 92945 43964 [Mw 96] Stephens constant [98]  C_S  \prod_{n = 1}^\infty \left(1 - \frac{p}{p^3-1}\right)
Prod[n=1 to ] 
 {1-hprime(n) 
 /(hprime(n)^3-1)}
T ? A065478 [0;1,1,2,1,3,1,3,1,2,1,77,2,1,1,10,2,1,1,1,7,...] ? 0.57595996889294543964316337549249669
0.73908 51332 15160 64165 [Mw 97] Dottie number [99] d  \lim_{x\to \infty} \cos^{[x]}(c) = \lim_{x\to \infty} \underbrace{\cos(\cos(\cos(\cdots(\cos(c)))))}_x
cos(c)=c
T A003957 [0;1,2,1,4,1,40,1,9,4,2,1,15,2,12,1,21,1,17,...] ? 0.73908513321516064165531208767387340
0.67823 44919 17391 97803 [Mw 98] Taniguchi constant [100]  C_T  \prod_{n = 1}^\infty \left(1 - \frac{3}{{p_n}^3}+\frac{2}{{p_n}^4}+\frac{1}{{p_n}^5}-\frac{1}{{p_n}^6}\right)
\scriptstyle p_{n}= \, \text{prime}
Prod[n=1 to ] {1 
 -3/ithprime(n)^3 
 +2/ithprime(n)^4 
 +1/ithprime(n)^5 
 -1/ithprime(n)^6}
T ? A175639 [0;1,2,9,3,1,2,9,11,1,13,2,15,1,1,1,2,4,1,1,1,...] ? 0.67823449191739197803553827948289481
1.85407 46773 01371 91843 [Mw 99] Gauss' Lemniscate constant[101]  L \text{/}\sqrt{2} \int\limits_0^\infty \frac{{\mathrm{d} x}}{\sqrt{1 + x^4}}
 = \frac {1}{4\sqrt{\pi}} \,\Gamma \left(\frac {1}{4}\right)^2
 = \frac{4 \left(\frac {1}{4}!\right)^2} {\sqrt{\pi}}
\scriptstyle \Gamma() \text{= Gamma function}
pi^(3/2)/(2 Gamma(3/4)^2)
A093341 [1;1,5,1,5,1,3,1,6,2,1,4,16,3,112,2,1,1,18,1,...] 1.85407467730137191843385034719526005
1.75874 36279 51184 82469 Infinite product constant, with Alladi-Grinstead [102]  Pr_1  \prod_{n = 2}^\infty \Big(1 + \frac{1}{n}\Big)^\frac{1}{n}
Prod[n=2 to inf] 
{(1+1/n)^(1/n)}
A242623 [1;1,3,6,1,8,1,4,3,1,4,1,1,1,6,5,2,40,1,387,2,...] 1977 1.75874362795118482469989684865589317
1.86002 50792 21190 30718 Spiral of Theodorus [103]  \partial  \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3} + \sqrt{n}} =
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} (n+1)}
Sum[n=1 to ] 
 {1/(n^(3/2) 
 +n^(1/2))}
A226317 [1;1,6,6,1,15,11,5,1,1,1,1,5,3,3,3,2,1,1,2,19,...] -460
to
-399
1.86002507922119030718069591571714332
2.79128 78474 77920 00329 Nested radical S5  S_{5} \displaystyle \frac{\sqrt{21}+1}{2} =  
\scriptstyle  \, \sqrt{5+\sqrt{5+\sqrt{5+\sqrt{5+\sqrt{5+\cdots}}}}}\;

 = 1+ \, \scriptstyle \sqrt{5-\sqrt{5-\sqrt{5-\sqrt{5-\sqrt{5-\cdots}}}}}\;

(sqrt(21)+1)/2
A A222134 [2;1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,...]
[2;1,3]
? 2.79128784747792000329402359686400424
0.70710 67811 86547 52440
+0.70710 67811 86547 524 i [Mw 100]
Square root of i [104]  \sqrt{i}  \sqrt[4]{-1} = \frac{1+i}{\sqrt{2}} = e^ \frac{i\pi}{4} =
 \cos\left (\frac{\pi}{4} \right ) + i\sin\left ( \frac{\pi}{4} \right )
(1+i)/(sqrt 2)
C A A010503 [0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..]
= [0;1,2,...]
[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] i
= [0;1,2,...] i
? 0.70710678118654752440084436210484903
+ 0.70710678118654752440084436210484 i
0.80939 40205 40639 13071 [Mw 101] Alladi–Grinstead constant [105] {\mathcal{A}_{AG}}  e^{-1+\sum \limits_{k=2}^\infty \sum \limits_{n=1}^\infty \frac{1}{n k^{n+1}}} = e^{-1-\sum \limits_{k=2}^\infty \frac{1}{k} \ln \left( 1-\frac{1}{k}\right)}
e^{(sum[k=2 to ] 
 |sum[n=1 to ] 
 {1/(n k^(n+1))})-1}
A085291 [0;1,4,4,17,4,3,2,5,3,1,1,1,1,6,1,1,2,1,22,...] 1977 0.80939402054063913071793188059409131
2.58498 17595 79253 21706 [Mw 102] Sierpiński's constant [106]  {K} \pi\left(2\gamma+\ln\frac{4\pi^3}{\Gamma(\tfrac{1}{4})^4}\right) =
  \pi (2 \gamma + 4 \ln\Gamma(\tfrac{3}{4}) - \ln\pi)

 = \pi \left(2 \ln 2+3 \ln \pi + 2 \gamma - 4 \ln \Gamma (\tfrac{1}{4})\right)

-Pi Log[Pi]+2 Pi 
  EulerGamma
+4 Pi Log
[Gamma[3/4]]
A062089 [2;1,1,2,2,3,1,3,1,9,2,8,4,1,13,3,1,15,18,1,...] 1907 2.58498175957925321706589358738317116
1.73245 47146 00633 47358 [Ow 4] Reciprocal of the Euler–Mascheroni constant \frac {1}{\gamma}  \left(\int_{0}^{1} -\log \left(\log \frac{1}{x}\right)\, dx\right)^{-1} = \sum_{n=1}^\infty (-1)^n (-1+\gamma)^n
1/Integrate_ 
 {x=0 to 1} 
 -log(log(1/x))
A098907 [1;1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...] 1.73245471460063347358302531586082968
1.43599 11241 76917 43235 [Mw 103] Lebesgue constant (interpolation) [107][108] {L_1}  \prod_{\begin{smallmatrix}i=0\\ j\neq i\end{smallmatrix}}^{n} \frac{x-x_i}{x_j-x_i} 
= \frac {1}{\pi} \int_0^{\pi} \frac {\lfloor \sin{\frac{3 t}{2}}\rfloor}{\sin{\frac{t}{2}}}\, dt = \frac {1}{3} + \frac {2 \sqrt{3}}{\pi}
1/3 + 2*sqrt(3)/pi
T A226654 [1;2,3,2,2,6,1,1,1,1,4,1,7,1,1,1,2,1,3,1,2,1,1,...] 1902 ~ 1.43599112417691743235598632995927221
3.24697 96037 17467 06105 [Mw 104] Silver root
Tutte–Beraha constant [109]
 \varsigma  2+2 \cos  \frac {2\pi} 7 = \textstyle 2+\frac{2+\sqrt[3]{7 + 7 \sqrt[3]{7 + 7 \sqrt[3]{\, 7 + \cdots}}}}{1+\sqrt[3]{7 + 7 \sqrt[3]{7 + 7 \sqrt[3]{\, 7 + \cdots}}}}
2+2 cos(2Pi/7)
A A116425 [3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] 3.24697960371746706105000976800847962
1.94359 64368 20759 20505 [Mw 105] Euler Totient
constant
[110][111]
ET   \underset {p \text{= primes}}
{\prod_{p} \Big(1 + \frac{1}{p(p-1)}\Big)} = \frac {\zeta(2)\zeta(3)}{\zeta(6)}=\frac {315 \zeta(3)}{2\pi^4}
zeta(2)*zeta(3)
/zeta(6)
A082695 [1;1,16,1,2,1,2,3,1,1,3,2,1,8,1,1,1,1,1,1,1,32,...] 1750 1.94359643682075920505707036257476343
1.49534 87812 21220 54191 Fourth root of five [112] \sqrt[4]{5}  \sqrt[5]{5 \,\sqrt[5]{5 \, \sqrt[5]{5 \,\sqrt[5]{5 \,\sqrt[5]{5  \,\cdots}}}}}
(5(5(5(5(5(5(5) 
 ^1/5)^1/5)^1/5) 
 ^1/5)^1/5)^1/5) 
 ^1/5 ...
A A011003 [1;2,53,4,96,2,1,6,2,2,2,6,1,4,1,49,17,2,3,2,...] 1.49534878122122054191189899414091339
0.87228 40410 65627 97617 [Mw 106] Area of Ford circle [113]  A_{CF}  
\sum_{q\ge 1} \sum_{ (p, q)=1 \atop 1 \le p < q }\pi \left( \frac{1}{2 q^2} \right)^2 
\underset {\zeta() \text{= Riemann Zeta Function}}
{= \frac{\pi}{4} \frac{\zeta(3)}{\zeta(4)}
= \frac{45}{2} \frac{\zeta(3)}{\pi^3}}
pi Zeta(3) 
/(4 Zeta(4))
[0;1,6,1,4,1,7,5,36,3,29,1,1,10,3,2,8,1,1,1,3,...] 0.87228404106562797617519753217122587
1.08232 32337 11138 19151 [Mw 107] Zeta(4) [114]


\zeta(4)  \frac{\pi^4}{90} = \sum_{n=1}^\infty\frac{{1}}{n^4} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{5^4} + ...
Sum[n=1 to ]
{1/n^4}
T A013662 [1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,23,...] ? 1.08232323371113819151600369654116790
1.56155 28128 08830 27491 Triangular root of 2.[115] {R_2} \frac{\sqrt{17}-1}{2} = \,\scriptstyle \sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+\cdots}}}}}} \,\, -1

 = \,\scriptstyle \sqrt{4-\sqrt{4-\sqrt{4-\sqrt{4-\sqrt{4-\sqrt{4-\cdots}}}}}} \textstyle

(sqrt(17)-1)/2
A A222133 [1;1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,...]
[1;1,1,3]
1.56155281280883027491070492798703851
9.86960 44010 89358 61883 Pi Squared


{\pi} ^2 6\, \zeta(2) = 6 \sum_{n=1}^\infty \frac{1}{n^2} = \frac{6}{1^2} + \frac{6}{2^2} + \frac{6}{3^2} + \frac{6}{4^2}+ \cdots
6 Sum[n=1 to ]
{1/n^2}
T A002388 [9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,1,3,...] 9.86960440108935861883449099987615114
1.32471 79572 44746 02596 [Mw 108] Plastic number [116] {\rho} \sqrt[3]{1 + \! \sqrt[3]{1 + \! \sqrt[3]{1 + \cdots}}} = \textstyle \sqrt[3]{\frac{1}{2}+ \! \sqrt{\frac{23}{108}}}+ \! \sqrt[3]{\frac{1}{2}- \! \sqrt{\frac{23}{108}}}
(1+(1+(1+(1+(1+(1)
^(1/3))^(1/3))^(1/3))
^(1/3))^(1/3))^(1/3)
A A060006 [1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,2,...] 1929 1.32471795724474602596090885447809734
2.37313 82208 31250 90564 Lévy 2 constant [117]


2\,ln\,\gamma \frac{\pi^2}{6ln(2)}
Pi^(2)/(6*ln(2))
T A174606 [2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] 1936 2.37313822083125090564344595189447424
0.85073 61882 01867 26036 [Mw 109] Regular paperfolding sequence [118][119] {P_f}  \sum_{n=0}^{\infty} \frac {8^{2^n}}{2^{2^{n+2}}-1} = 
\sum_{n=0}^{\infty} \cfrac {\tfrac {1}{2^{2^n}}} {1-\tfrac{1}{2^{2^{n+2}}}}
N[Sum[n=0 to ]
 {8^2^n/(2^2^ 
 (n+2)-1)},37]
A143347 [0;1,5,1,2,3,21,1,4,107,7,5,2,1,2,1,1,2,1,6,...] 0.85073618820186726036779776053206660
1.15636 26843 32269 71685 [Mw 110] Cubic recurrence constant [120]{{.}} [121]


{\sigma_3} \prod_{n=1}^\infty n^{{3}^{-n}} = \sqrt[3] {1 \sqrt[3] {2 \sqrt[3]{3 \cdots}}} = 1^{1/3} \; 2^{1/9} \; 3^{1/27} \cdots
prod[n=1 to ]
{n ^(1/3)^n}
A123852 [1;6,2,1,1,8,13,1,3,2,2,6,2,1,2,1,1,1,10,33,...] 1.15636268433226971685337032288736935
1.26185 95071 42914 87419 [Mw 111] Fractal dimension of the Koch snowflake [122] {C_k}  \frac{\log 4}{\log 3}
log(4)/log(3)
T A100831 [1;3,1,4,1,1,11,1,46,1,5,112,1,1,1,1,1,3,1,7,...] 1.26185950714291487419905422868552171
6.58088 59910 17920 97085 Froda constant[123]

2^{\,e} 2^e
2^e
[6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] 6.58088599101792097085154240388648649
0.26149 72128 47642 78375 [Mw 112] Meissel-Mertens constant [124] {M} \lim_{n \rightarrow \infty } \!\! \left( 
\sum_{p \leq n} \frac{1}{p} \! - \ln(\ln(n))\! \right) \!\! =
\underset{\!\!\!\! \gamma: \, \text{Euler constant} ,\,\, 
p: \, \text{prime}}{\! \gamma \! + \!\! \sum_{p} \!\left( \! 
\ln \! \left( \! 1 \! - \! \frac{1}{p} \! \right)
 \!\! + \! \frac{1}{p} \! \right)}
gamma+ 
 Sum[n=1 to ] 
 {ln(1-1/prime(n)) 
 +1/prime(n)}
T ? A077761 [0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,296,...] 1866
&
1873
0.26149721284764278375542683860869585
4.81047 73809 65351 65547 John constant [125]  \gamma \sqrt[i]{i} = i^{-i} = (i^i)^{-1} = (((i)^i)^i)^i = e^{\frac{\pi}{2}} = \sqrt{\sum_{n=0}^\infty \frac{\pi^{n}}{n!}}
e^(π/2)
T A042972 [4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,2,...] 4.81047738096535165547303566670383313
-0.5
± 0.86602 54037 84438 64676 i
Cube Root of 1 [126] \sqrt[3]{1}  \begin{cases} \ \ 1 \\ -\frac{1}{2}+\frac{\sqrt{3}}{2}i \\ -\frac{1}{2}-\frac{\sqrt{3}}{2}i. \end{cases}
1, 
 E^(2i pi/3), 
 E^(-2i pi/3)
C A A010527 - [0,5]
± [0;1,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] i
- [0,5]
± [0; 1, 6, 2] i
- 0.5
± 0.8660254037844386467637231707529 i
0.11000 10000 00000 00000 0001 [Mw 113] Liouville number [127]


\text{£}_{Li}  \sum_{n=1}^\infty \frac{1}{10^{n!}} = \frac {1}{10^{1!}} + \frac{1}{10^{2!}} + \frac{1}{10^{3!}} + \frac{1}{10^{4!}}  + \cdots
Sum[n=1 to ] 
 {10^(-n!)}
T A012245 [1;9,1,999,10,9999999999999,1,9,999,1,9] 0.11000100000000000000000100...
0.06598 80358 45312 53707 [Mw 114] Lower limit of Tetration [128] {e}^{-e} \left(\frac {1}{e}\right)^e
1/(e^e)
A073230 [0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] 0.06598803584531253707679018759684642
1.83928 67552 14161 13255 Tribonacci constant[129]  {\phi_{}}_3 \textstyle \frac{1+\sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}}{3} = \scriptstyle \, 1+ \left(\sqrt[3]{\tfrac12 + \sqrt[3]{\tfrac12 + \sqrt[3]{\tfrac12 + ...}}}\right)^{-1}
(1/3)*(1+(19+3 
 *sqrt(33))^(1/3) 
 +(19-3 
 *sqrt(33))^(1/3))
A A058265 [1;1,5,4,2,305,1,8,2,1,4,6,14,3,1,13,5,1,7,...] 1.83928675521416113255185256465328660
0.36651 29205 81664 32701 Median of the Gumbel distribution [130] {ll_2} -\ln(\ln(2))
-ln(ln(2))
A074785 [0;2,1,2,1,2,6,1,6,6,2,2,2,1,12,1,8,1,1,3,1,...] 0.36651292058166432701243915823266947
36.46215 96072 07911 7709 Pi^pi [131]

\pi ^\pi \pi ^\pi
pi^pi
A073233 [36;2,6,9,2,1,2,5,1,1,6,2,1,291,1,38,50,1,2,...] 36.4621596072079117709908260226921236
0.53964 54911 90413 18711 Ioachimescu constant [132] 2+\zeta(\tfrac12) {2{-}(1{+}\sqrt{2})\sum_{n=1}^\infty \frac{(-1)^{n+1}}{\sqrt{n}}} = \gamma + \sum_{n=1}^\infty \frac{(-1)^{2n} \; \gamma_n}{2^n n!}
γ + N[
sum[n=1 to ] 
 {((-1)^(2n) 
 gamma_n)
/(2^n n!)}]
2-
A059750
[0;1,1,5,1,4,6,1,1,2,6,1,1,2,1,1,1,37,3,2,1,...] 0.53964549119041318711050084748470198
15.15426 22414 79264 1897 [Mw 115] Exponential reiterated constant [133] e^e  \sum_{n=0}^\infty \frac{e^n}{n!} = \lim_{n \to \infty} \left(\frac {1+n}{n} \right)^{n^{-n}(1+n)^{1+n}}
Sum[n=0 to ]
{(e^n)/n!}
A073226 [15;6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,6,7,...] 15.1542622414792641897604302726299119
0.64624 54398 94813 30426 [Mw 116] Masser–Gramain constant [134] {C}  \gamma {\beta}(1) \! + \! {\beta}'(1) \! = \pi \! \left(-\!\ln \Gamma(\tfrac14)+\tfrac34 \pi+\tfrac12 \ln 2+\tfrac12 \gamma \right)

 = \pi \! \left(-\!\ln (\tfrac14 !)+\tfrac34 \ln \pi -\tfrac32 \ln 2+\tfrac12 \, \gamma \right) \scriptstyle \gamma = \text{Euler–Mascheroni constant}= 0.5772156649\ldots \scriptstyle \beta() = \text{Beta function} , \quad \scriptstyle \Gamma() = \text{Gamma function}

Pi/4*(2*Gamma 
+ 2*Log[2]
 + 3*Log[Pi]- 4 
 Log[Gamma[1/4]])
A086057 [0;1,1,1,4,1,3,2,3,9,1,33,1,4,3,3,5,3,1,3,4,...] 0.64624543989481330426647339684579279
1.11072 07345 39591 56175 [Mw 117] The ratio of a square and circle circumscribed [135] \frac{\pi}{2\sqrt 2} \sum_{n = 1}^\infty \frac{({-}1)^{\lfloor \frac{n-1}{2}\rfloor}}{2n+1} = \frac{1}{1} + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - {\cdots}
sum[n=1 to ]
{(-1)^(floor(
(n-1)/2))
/(2n-1)}
T A093954 [1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] 1.11072073453959156175397024751517342
1.45607 49485 82689 67139 [Mw 118] Backhouse's constant [136] {B} \lim_{k \to \infty}\left | \frac{q_{k+1}}{q_k} \right \vert  \quad \scriptstyle \text {where:} \displaystyle \;\; Q(x)=\frac{1}{P(x)}= \! \sum_{k=1}^\infty q_k x^k

 P(x) =  \sum_{k=1}^\infty \underset{p_k\text{ prime}}{p_k x^k} = 1+2x+3x^2+5x^3+\cdots

1/( FindRoot[0 == 1 + 
Sum[x^n Prime[n], 
{n, 10000}], {x, {1}})
A072508 [1;2,5,5,4,1,1,18,1,1,1,1,1,2,13,3,1,2,4,16,...] 1995 1.45607494858268967139959535111654355
1.85193 70519 82466 17036 [Mw 119] Gibbs constant [137] {Si(\pi)}
Sin integral
 \int_0^{\pi} \frac {\sin t}{t}\, dt =
\sum \limits_{n=1}^\infty (-1)^{n-1} \frac{\pi^{2n-1}}{(2n-1)(2n-1)!}

 =  \pi- \frac{\pi^3}{3\cdot3!} + \frac{\pi^5}{5\cdot5!} - \frac{\pi^7}{7\cdot7!} + \cdots

SinIntegral[Pi]
A036792 [1;1,5,1,3,15,1,5,3,2,7,2,1,62,1,3,110,1,39,...] 1.85193705198246617036105337015799136
0.23571 11317 19232 93137 [Mw 120] Copeland–Erdős constant [138] {\mathcal{C}_{CE}} \sum _{n=1}^\infty \frac{p_n} {10^{n + \sum \limits_{k=1}^n \lfloor \log_{10}{p_k} \rfloor }}
sum[n=1 to ] 
 {prime(n) /(n+(10^ 
 sum[k=1 to n]{floor 
 (log_10 prime(k))}))}
I A033308 [0;4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,...] 0.23571113171923293137414347535961677
1.52362 70862 02492 10627 [Mw 121] Fractal dimension of the boundary of the dragon curve [139] {C_d} \frac{\log\left(\frac{1+\sqrt[3]{73-6\sqrt{87}}+\sqrt[3]{73+6\sqrt{87}}}{3}\right)}
{\log(2)}
(log((1+(73-6 sqrt(87))^1/3+ 
(73+6 sqrt(87))^1/3)/3))/ 
log(2)))
T [1;1,1,10,12,2,1,149,1,1,1,3,11,1,3,17,4,1,...] 1.52362708620249210627768393595421662
1.78221 39781 91369 11177 [Mw 122] Grothendieck constant [140]


{K_{R}}  \frac {\pi}{2 \log(1+\sqrt{2})}
pi/(2 log(1+sqrt(2)))
A088367 [1;1,3,1,1,2,4,2,1,1,17,1,12,4,3,5,10,1,1,3,...] 1.78221397819136911177441345297254934
1.58496 25007 21156 18145 [Mw 123] Hausdorff dimension, Sierpinski triangle [141] {log_2 3} \frac {\log 3}{\log 2} = \frac{\sum_{n=0}^\infty \frac{1}{2^{2n+1}(2n+1)}}{\sum_{n=0}^\infty \frac{1}{3^{2n+1}(2n+1)}} = \frac{\frac{1}{2}+\frac{1}{24}+\frac{1}{160}+\cdots}{\frac{1}{3}+\frac{1}{81}+\frac{1}{1215}+\cdots}
( Sum[n=0 to ] {1/
(2^(2n+1) (2n+1))})/ 
 (Sum[n=0 to ] {1/
(3^(2n+1) (2n+1))})
T A020857 [1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] 1.58496250072115618145373894394781651
1.30637 78838 63080 69046 [Mw 124] Mills' constant [142] {\theta}  \lfloor \theta^{3^{n}} \rfloor primes
Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8)
A051021 [1;3,3,1,3,1,2,1,2,1,4,2,35,21,1,4,4,1,1,3,2,...] 1947 1.30637788386308069046861449260260571
2.02988 32128 19307 25004 [Mw 125] Figure eight knot hyperbolic volume [143] {V_{8}}  2 \sqrt{3}\, \sum_{n=1}^\infty \frac{1}{n
{2n \choose n}} \sum_{k=n}^{2n-1} \frac{1}{k} = 
6 \int \limits_{0}^{\pi / 3} 
\log \left( \frac{1}{2 \sin t} \right) \, dt =

\scriptstyle
\frac{\sqrt{3}}{{9}}\, \sum \limits_{n=0}^\infty 
\frac{(-1)^n}{27^n}\,\left\{\!
\frac{{18}}{(6n+1)^2} - \frac{{18}}{(6n+2)^2} -
\frac{{24}}{(6n+3)^2} -
\frac{{6}}{(6n+4)^2} +
\frac{{2}}{(6n+5)^2}\!\right\}

6 integral[0 to pi/3]
 {log(1/(2 sin (n)))}
A091518 [2;33,2,6,2,1,2,2,5,1,1,7,1,1,1,113,1,4,5,1,...] 2.02988321281930725004240510854904057
262 53741 26407 68743
.99999 99999 99250 073 [Mw 126]
Hermite–Ramanujan constant[144] {R}  e^{\pi\sqrt{163}}
e^(π sqrt(163))
T A060295 [262537412640768743;1,1333462407511,1,8,1,1,5,...] 1859 262537412640768743.999999999999250073
1.74540 56624 07346 86349 [Mw 127] Khinchin harmonic mean [145] {K_{-1}}  \frac {\log 2} {\sum \limits_{n=1}^\infty \frac {1}{n}
 \log\bigl(1{+}\frac{1}{n(n+2)}\bigr)} = \lim_{n \to \infty} \frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}}

a1 ... an are elements of a continued fraction [a0; a1, a2, ..., an]

(log 2)/
(sum[n=1 to ] 
{1/n log(1+
1/(n(n+2))}
A087491 [1;1,2,1,12,1,5,1,5,13,2,13,2,1,9,1,6,1,3,1,...] 1.74540566240734686349459630968366106
1.64872 12707 00128 14684 [Ow 5] Square root of the number e [146]


\sqrt {e} \sum_{n = 0}^\infty \frac{1}{2^n n!} = \sum_{n = 0}^\infty \frac{1}{(2n)!!} = \frac{1}{1}+\frac{1}{2}+\frac{1}{8}+\frac{1}{48}+\cdots
Sum[n=0 to ]
{1/(2^n n!)}
T A019774 [1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...]
= [1;1,1,1,4p+1], p∈ℕ
1.64872127070012814684865078781416357
1.01734 30619 84449 13971 [Mw 128] Zeta(6) [147] \zeta(6) \frac{\pi^6}{945} \! = \! \prod_{n=1}^\infty \! \underset{p_n: \text{ prime}}{ \frac{1}{{1-p_n}^{-6}}} = \frac{1}{1 \! -\! 2^{-6}} \! \cdot \! \frac{1}{1 \! - \! 3^{-6}}  \! \cdot \! \frac{1}{1 \! - \! 5^{-6}} \cdots
Prod[n=1 to ]
{1/(1-ithprime
(n)^-6)}
T A013664 [1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] 1.01734306198444913971451792979092052
0.10841 01512 23111 36151 [Mw 129] Trott constant [148] \mathrm{T}_1  \textstyle [1, 0, 8, 4, 1, 0, 1, 5, 1, 2, 2, 3, 1, 1, 1, 3, 6,...]

 \tfrac 1{1+\tfrac 1{0+\tfrac 1{8+\tfrac 1{4+\tfrac 1{1+\tfrac 1{0+1{/\cdots}}}}}}}

A039662 [0;9,4,2,5,1,2,2,3,1,1,1,3,6,1,5,1,1,2,...] 0.10841015122311136151129081140641509
0.00787 49969 97812 3844 [Mw 130] Chaitin constant [149]
\Omega \sum_{p \in P} 2^{-|p|}
  • p: Halted program
  • |p|: Size in bits of program p
  • P: Domain of all programs that stop.
See also: Halting problem
T A100264 [0; 126, 1, 62, 5, 5, 3, 3, 21, 1, 4, 1] 1975 0.0078749969978123844
0.83462 68416 74073 18628 [Mw 131] Gauss constant [150] {G}   \frac{1}{\mathrm{agm}(1, \sqrt{2})} = \frac{4 \sqrt{2} \,(\tfrac14 !)^2}{\pi ^{3/2}}= \frac{2}{\pi}\int_0^1\frac{dx}{\sqrt{1 - x^4}}

AGM = Arithmetic–geometric mean

(4 sqrt(2)((1/4)!)^2)
/pi^(3/2)
T A014549 [0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] 0.83462684167407318628142973279904680
1.45136 92348 83381 05028 [Mw 132] Ramanujan–Soldner constant[151][152] {\mu}  \mathrm{li}(x) = \int\limits_0^x  \frac{dt}{\ln t} = 0  
{\color{White}{......}} li = Logarithmic integral

 \mathrm{li}(x)\;=\;\mathrm{Ei}(\ln{x})  
{\color{White}{........}} Ei = Exponential integral

FindRoot[li(x) = 0]
I A070769 [1;2,4,1,1,1,3,1,1,1,2,47,2,4,1,12,1,1,2,2,1,...] 1792
to
1809
1.45136923488338105028396848589202744
0.64341 05462 88338 02618 [Mw 133] Cahen's constant [153] \xi _{2}  \sum_{k=1}^{\infty} \frac{(-1)^{k}}{s_k-1} = \frac{1}{1} - \frac{1}{2} + \frac{1}{6} - \frac{1}{42} + \frac{1}{1806} {\,\pm \cdots}

Where sk is the kth term of Sylvester's sequence 2, 3, 7, 43, 1807, ...
Defined as: \, \, S_0= \, 2 , \,\, S_k= \, 1+\prod \limits_{n=0}^{k-1} S_n\text{ for}\;k>0

T A080130 [0; 1, 1, 1, 4, 9, 196, 16641, 639988804, ...] 1891 0.64341054628833802618225430775756476
1.41421 35623 73095 04880 [Mw 134] Square root of 2, Pythagoras constant.[154] \sqrt{2} \! \prod_{n=1}^\infty \! \left( 1 \! + \! \frac{(-1)^{n+1}}{2n-1} \right) \! = \! \left(1 \! + \! \frac{1}{1}\right) \! \left(1 \! - \! \frac{1}{3} \right) \! \left(1 \! + \! \frac{1}{5} \right) \cdots
prod[n=1 to ] 
 {1+(-1)^(n+1) 
 /(2n-1)}
A A002193 [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]
= [1;2...]
1.41421356237309504880168872420969808
1.77245 38509 05516 02729 [Mw 135] Carlson–Levin constant [155] {\Gamma}(\tfrac12) \sqrt{\pi} = \left(-\frac{1}{2}\right)! = \int_{-\infty }^{\infty } \frac {1}{e^{x^2}} \, dx  = \int_{0 }^{1} \frac {1}{\sqrt{-\ln x}} \, dx
sqrt (pi)
T A002161 [1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] 1.77245385090551602729816748334114518
1.05946 30943 59295 26456 [Ow 6] Musical interval between each half tone [156][157]

\sqrt[12]{2} 
\begin{array}{l|ccccccccccccr}
\! 2^\frac{x}{12} \! & \!\!\scriptstyle{0} & \!\!\!\!\scriptstyle{1} & \!\!\scriptstyle{2} & \!\!\scriptstyle{3}
 & \!\!\scriptstyle{4} & \scriptstyle{5} & \!\!\scriptstyle{6} & \!\!\scriptstyle{7} & \!\!\scriptstyle{8}
 & \!\!\scriptstyle{9} & \!\! \scriptstyle{10} & \!\! \scriptstyle{11} & \!\! \scriptstyle{12} \\
\hline
\! \scriptstyle{\textrm{Key}} \! & \!\scriptstyle{\mathrm{C_1}} & \!\!\scriptstyle{\mathrm{C^\#}} & \!\!\scriptstyle{\mathrm{D}} 
 & \!\scriptstyle{\mathrm{D^\#}} & \!\!\scriptstyle{\mathrm{E}} & \scriptstyle{\mathrm{F}} & \!\scriptstyle{\mathrm{F^\#}}
 & \!\!\scriptstyle{\mathrm{G}} & \!\scriptstyle{\mathrm{G^\#}} & \!\!\scriptstyle{\mathrm{A}} & \!\scriptstyle{\mathrm{A^\#}} 
 & \!\!\scriptstyle{\mathrm{B}} & \!\scriptstyle{\mathrm{C_2}}
\end{array}
(A = 440 Hz)
2^(1/12)
A A010774 [1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] 1.05946309435929526456182529494634170
1.01494 16064 09653 62502 [Mw 136] Gieseking constant [158] {\pi \ln \beta} \frac{3\sqrt{3}}{4} \left(1- \sum_{n=0}^\infty \frac{1}{(3n+2)^2}+ \sum_{n=1}^\infty\frac{1}{(3n+1)^2} \right)=

\textstyle \frac{3\sqrt{3}}{4} \left( 1 - \frac{1}{2^2} + \frac{1}{4^2}-\frac{1}{5^2}+\frac{1}{7^2}-\frac{1}{8^2}+\frac{1}{10^2} \pm \cdots \right).

sqrt(3)*3/4 *(1
-Sum[n=0 to ]
{1/((3n+2)^2)}
+Sum[n=1 to ]
{1/((3n+1)^2)})
A143298 [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] 1912 1.01494160640965362502120255427452028
2.62205 75542 92119 81046 [Mw 137] Lemniscate constant [159] {\varpi}  \pi \, {G} = 4 \sqrt{\tfrac2\pi}\,\Gamma{\left(\tfrac54 \right)^2} = \tfrac14 \sqrt{\tfrac{2}{\pi}}\,\Gamma {\left(\tfrac14 \right)^2} = 4 \sqrt{\tfrac2\pi}\left(\tfrac14 !\right)^2
4 sqrt(2/pi)
((1/4)!)^2
T A062539 [2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] 1798 2.62205755429211981046483958989111941
1.28242 71291 00622 63687 [Mw 138] Glaisher–Kinkelin constant


{A}  e^{\frac{1}{12}-\zeta^\prime(-1)} =
 e^{\frac{1}{8}-\frac{1}{2}\sum\limits_{n=0}^\infty \frac{1}{n+1} \sum\limits_{k=0}^n \left(-1\right)^k \binom{n}{k} \left(k+1\right)^2 \ln(k+1)}
e^(1/12-zeta´{-1})
T ? A074962 [1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] 1.28242712910062263687534256886979172
-4.22745 35333 76265 408 [Mw 139] Digamma (1/4) [160] {\psi} (\tfrac14)   -\gamma -\frac{\pi}{2} - 3\ln{2} = -\gamma+\sum_{n=0}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+\tfrac14}\right)
-EulerGamma 
-\pi/2 -3 log 2
A020777 -[4;4,2,1,1,10,1,5,9,11,1,22,1,1,14,1,2,1,4,...] -4.2274535333762654080895301460966835
0.28674 74284 34478 73410 [Mw 140] Strongly Carefree constant [161]



K_{2}  \prod_{n=1}^\infty \underset{p_n: \text{ prime}} {\left( 1-\frac{3 p_n-2}{{p_n}^{3}}\right)} = \frac {6}{\pi ^2}\prod_{n=1}^\infty \underset{p_n: \text{ prime}} {\left( 1-\frac{1}{{p_n(p_n+1)}}\right)}
N[ prod[k=1 to ] 
 {1-(3*prime(k)-2) 
 /(prime(k)^3)}]
A065473 [0;3,2,19,3,12,1,5,1,5,1,5,2,1,1,1,1,1,3,7,...] 0.28674742843447873410789271278983845
3.62560 99082 21908 31193 [Mw 141] Gamma(1/4)[162] \Gamma(\tfrac14)  4 \left(\frac{1}{4}\right)! = \left(-\frac{3}{4}\right)!
4(1/4)!
T A068466 [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] 1729 3.62560990822190831193068515586767200
1.66168 79496 33594 12129 [Mw 142] Somos' quadratic recurrence constant [163] {\sigma} \prod_{n=1}^\infty n^{{1/2}^n} = \sqrt {1 \sqrt {2 \sqrt{3 \cdots}}} = 1^{1/2} \; 2^{1/4} \; 3^{1/8} \cdots
prod[n=1 to ]
{n ^(1/2)^n}
T ? A065481 [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] 1.66168794963359412129581892274995074
0.95531 66181 245092 78163 Magic angle [164]  {\theta_m}  \arctan \left(\sqrt{2}\right) = \arccos \left(\sqrt{\tfrac13}\right) \approx   \textstyle {54.7356} ^{ \circ }
arctan(sqrt(2))
T A195696 [0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...] 0.95531661812450927816385710251575775
1.78107 24179 90197 98523 [Mw 143] Exp.gamma,
Barnes G-function [165]
e^{\gamma} \prod_{n=1}^\infty \frac{e^{\frac{1}{n}}}{1+\tfrac1n} = \prod_{n=0}^\infty \left(\prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}}\right)^{\frac{1}{n+1}} =

\textstyle \left ( \frac{2}{1} \right )^{1/2} \left (\frac{2^2}{1 \cdot 3} \right )^{1/3} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/4}
\left (\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right )^{1/5}\cdots

Prod[n=1 to ]
{e^(1/n)}
/{1 + 1/n}
A073004 [1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] 1.78107241799019798523650410310717954
0.74759 79202 53411 43517 [Mw 144] Rényi's Parking Constant [166] {m}  \int \limits_{0}^{\infty} exp \left(\! -2 \int \limits_{0}^{x} \frac {1-e^{-y}}{y} dy\right)\! dx = {e^{-2 \gamma}} \int \limits_{0}^{\infty} \frac{e^{-2 \Gamma(0,n)}}{n^2}
[e^(-2*Gamma)] 
* Int{n,0,}[ e^(- 2
*Gamma(0,n)) /n^2]
A050996 [0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...] 0.74759792025341143517873094383017817
1.27323 95447 35162 68615 Ramanujan–Forsyth series[167] \frac {4}{\pi}  \displaystyle \sum \limits_{n=0}^\infty \textstyle \left(\frac{(2n-3)!!}{(2n)!!}\right)^2 = {1  \! +  \!  \left(\frac {1}{2} \right)^2  \! + \! \left(\frac {1}{2 \cdot 4} \right)^2 \! + \! \left(\frac {1 \cdot 3}{2 \cdot 4 \cdot 6} \right)^2 + \cdots}
Sum[n=0 to ] 
 {[(2n-3)!! 
 /(2n)!!]^2}
I A088538 [1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] 1.27323954473516268615107010698011489
1.44466 78610 09766 13365 [Mw 145] Steiner number, Iterated exponential Constant [168]
\sqrt[e]{e} e^{\frac{1}{e}}{\color{White}{...........}} = Upper Limit of Tetration
e^(1/e)
T A073229 [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 1.44466786100976613365833910859643022
0.69220 06275 55346 35386 [Mw 146] Minimum value of función
ƒ(x) = xx [169]
 {\left(\frac{1}{e}\right)}^\frac{1}{e} {e}^{-\frac{1}{e}} {\color{White}{..........}} = Inverse Steiner Number
e^(-1/e)
A072364 [0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 0.69220062755534635386542199718278976
0.34053 73295 50999 14282 [Mw 147] Pólya Random walk constant [170] {p(3)}  1- \!\!\left({3\over(2\pi)^3}\int\limits_{-\pi}^{\pi} \int\limits_{-\pi}^{\pi} \int\limits_{-\pi}^{\pi} {dx\,dy\,dz\over 3-\!\cos x-\!\cos y-\!\cos z}\right)^{\!-1}

 = 1- 16\sqrt{\tfrac23}\;\pi^3 \left(\Gamma(\tfrac{1}{24})\Gamma(\tfrac{5}{24})\Gamma(\tfrac{7}{24})\Gamma(\tfrac{11}{24})\right)^{-1}

1-16*Sqrt[2/3]*Pi^3 
/(Gamma[1/24]
*Gamma[5/24]
*Gamma[7/24]
*Gamma[11/24])
A086230 [0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...] 0.34053732955099914282627318443290289
0.54325 89653 42976 70695 [Mw 148] Bloch–Landau constant [171] {L}  = \frac {\Gamma(\tfrac13)\;\Gamma(\tfrac{5}{6})} {\Gamma(\tfrac{1}{6})} = \frac {(-\tfrac23)!\;(-1+\tfrac56)!} {(-1+\tfrac16)!}
gamma(1/3)
*gamma(5/6)
/gamma(1/6)
A081760 [0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...] 1929 0.54325896534297670695272829530061323
0.18785 96424 62067 12024 [Mw 149] [Ow 7] MRB Constant, Marvin Ray Burns [172][173][174]  C_{{}_{MRB}}  \sum_{n=1}^{\infty} (-1)^n (n^{1/n}-1) =  - \sqrt[1]{1} + \sqrt[2]{2} - \sqrt[3]{3} + \cdots
Sum[n=1 to ]
{(-1)^n (n^(1/n)-1)}
A037077 [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] 1999 0.18785964246206712024851793405427323
1.46707 80794 33975 47289 [Mw 150] Porter Constant[175] {C}  \frac{6\ln 2}{\pi ^2} \left(3 \ln 2 + 4 \,\gamma -\frac{24}{\pi ^2} \,\zeta '(2)-2 \right)-\frac{1}{2}

 \scriptstyle \gamma \, \text{= Euler–Mascheroni Constant} = 0.5772156649\ldots  \scriptstyle \zeta '(2) \,\text{= Derivative of }\zeta(2)= 
- \sum \limits_{n = 2}^{\infty} \frac{\ln n}{n^2} = -0.9375482543\ldots

6*ln2/pi^2(3*ln2+ 
4 EulerGamma- 
WeierstrassZeta'(2) 
*24/pi^2-2)-1/2
A086237 [1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...] 1974 1.46707807943397547289779848470722995
4.66920 16091 02990 67185 [Mw 151] Feigenbaum constant δ [176] {\delta}  \lim_{n \to \infty}\frac {x_{n+1}-x_n}{x_{n+2}-x_{n+1}} \qquad \scriptstyle x \in (3.8284;\, 3.8495)

 \scriptstyle x_{n+1}=\,ax_n(1-x_n)\quad \text{or} \quad x_{n+1}=\,a\sin(x_n)

T A006890 [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] 1975 4.66920160910299067185320382046620161
2.50290 78750 95892 82228 [Mw 152] Feigenbaum constant α[177] \alpha \lim_{n \to \infty}\frac {d_n}{d_{n+1}} T ? A006891 [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] 1979 2.50290787509589282228390287321821578
0.62432 99885 43550 87099 [Mw 153] Golomb–Dickman constant [178]


{\lambda} \int \limits_0^\infty \underset{\text{Para } x>2}{\frac{f(x)}{x^2} \, dx} = \int \limits_0^1 e^{\operatorname{Li}(n)} dn \quad \scriptstyle \text{Li: Logarithmic integral}
N[Int{n,0,1}[e^Li(n)],34]
A084945 [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...] 1930
&
1964
0.62432998854355087099293638310083724
23.14069 26327 79269 0057 [Mw 154] Gelfond constant [179]


{e}^{\pi}  (-1)^{-i} = i^{-2i} = \sum_{n=0}^\infty \frac{\pi^{n}}{n!} = \frac{\pi^{1}}{1} + \frac{\pi^{2}}{2!} + \frac{\pi^{3}}{3!} + \cdots
Sum[n=0 to ] 
 {(pi^n)/n!}
T A039661 [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] 23.1406926327792690057290863679485474
7.38905 60989 30650 22723 Conic constant, Schwarzschild constant [180] e^2  \sum_{n = 0}^\infty \frac{2^n}{n!} = 1+2+\frac{2^2}{2!}+\frac{2^3}{3!}+\frac{2^4}{4!}+\frac{2^5}{5!}+\cdots
Sum[n=0 to ]
{2^n/n!}
T A072334 [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...]
= [7,2,1,1,n,4*n+6,n+2], n = 3, 6, 9, etc.
7.38905609893065022723042746057500781
0.35323 63718 54995 98454 [Mw 155] Hafner–Sarnak–McCurley constant (1) [181] {\sigma}  \prod_{k=1}^{\infty}\left\{1-[1-\prod_{j=1}^n \underset{p_k: \text{ prime}}{(1-p_k^{-j})]^2}\right\}
prod[k=1 to ] 
{1-(1-prod[j=1 to n] 
{1-ithprime(k)^-j})^2}
A085849 [0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...] 1993 0.35323637185499598454351655043268201
0.60792 71018 54026 62866 [Mw 156] Hafner–Sarnak–McCurley constant (2) [182] \frac{1}{\zeta(2)}  \frac{6}{\pi^2} = \prod_{n = 0}^\infty \underset{p_n: \text{ prime}}{\! \left(\! 1- \frac{1}{{p_n}^2} \! \right)} \! = \! \textstyle \left(1 \! - \! \frac{1}{2^2}\right) \! \left(1 \! - \! \frac{1}{3^2}\right) \! \left(1 \! - \! \frac{1}{5^2}\right)\cdots
Prod{n=1 to }
(1-1/ithprime(n)^2)
T A059956 [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] 0.60792710185402662866327677925836583
0.12345 67891 01112 13141 [Mw 157] Champernowne constant [183] C_{10} \sum_{n=1}^\infty \; \sum_{k=10^{n-1}}^{10^n-1}\frac{k}{10^{kn-9\sum_{j=0}^{n-1}10^j(n-j-1)}} T A033307 [0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...] 1933 0.12345678910111213141516171819202123
0.76422 36535 89220 66299 [Mw 158] Landau-Ramanujan constant [184]



K \frac1{\sqrt2}\prod_{p\equiv3\!\!\!\!\!\mod \! 4}\!\! \underset{\!\!\!\!\!\!\!\! p: \text{ prime}}{\left(1-\frac1{p^2}\right)^{-\frac{1}{2}}}\!\!=\frac\pi4\prod_{p\equiv1\!\!\!\!\!\mod \!4}\!\! \underset{\!\!\!\! p: \text{ prime}}{\left(1-\frac1{p^2}\right)^\frac{1}{2}} T ? A064533 [0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...] 0.76422365358922066299069873125009232
2.71828 18284 59045 23536 [Mw 159] Number e, Euler's number [185] {e} \! \lim_{n \to \infty} \! \left( \! 1 \! + \! \frac {1}{n}\right)^n \! = \! \sum_{n = 0}^\infty \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1} + \frac{1}{2!} + \frac{1}{3!} + \textstyle \cdots
Sum[n=0 to ]
{1/n!} 
(* lim_(n->∞) 
(1+1/n)^n *)
T A001113 [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [2;1,2p,1], p∈ℕ
2.71828182845904523536028747135266250
0.36787 94411 71442 32159 [Mw 160] Inverse of Number e [186]


\frac{1}{e} \sum_{n = 0}^\infty \frac{(-1)^n}{n!} = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} +\cdots
Sum[n=2 to ]
{(-1)^n/n!}
T A068985 [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...]
= [0;2,1,1,2p,1], p∈ℕ
1618 0.36787944117144232159552377016146086
0.69034 71261 14964 31946 Upper iterated exponential [187]  {H}_{2n+1}  \lim_{n \to \infty} {H}_{2n+1} = 
\textstyle \left(\frac{1}{2}\right)
^{\left(\frac{1}{3}\right)
^{\left(\frac{1}{4}\right)
^{\cdot^{\cdot^{\left(\frac{1}{2n+1}\right)}}}}}
 = {2}^{-3^{-4^{\cdot^{\cdot^{{-2n-1}}}}}}
2^-3^-4^-5^-6^ 
 -7^-8^-9^-10^ 
 -11^-12^-13 
A242760 [0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,3,1,1,10,1,3,2,...] 0.69034712611496431946732843846418942
0.65836 55992 ... Lower límit iterated exponential [188]  {H}_{2n}  \lim_{n \to \infty} {H}_{2n} = 
\textstyle \left(\frac{1}{2}\right)
^{\left(\frac{1}{3}\right)
^{\left(\frac{1}{4}\right)
^{\cdot^{\cdot^{\left(\frac{1}{2n}\right)}}}}}
 = {2}^{-3^{-4^{\cdot^{\cdot^{{-2n}}}}}}
2^-3^-4^-5^-6^ 
 -7^-8^-9^-10^ 
 -11^-12 
[0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...] 0.6583655992...
3.14159 26535 89793 23846 [Mw 161] π number, Archimedes number [189]  \pi \lim_{n\to \infty }\, 2^n \underbrace{\sqrt{2-\sqrt{2+\sqrt{2+\cdots +\sqrt{2}}}}}_n
Sum[n=0 to ]
{(-1)^n 4/(2n+1)}
T A000796 [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] 3.14159265358979323846264338327950288
1.92878 00... [Mw 162] Wright constant [190]


{\omega} \left \lfloor 2^{2^{2^{\cdot^{\cdot^{2^{\omega}}}}}} \!\right \rfloor \scriptstyle \text{= primes:} \displaystyle\left\lfloor 2^\omega\right\rfloor \scriptstyle \text{=3,} 
\displaystyle\left\lfloor 2^{2^\omega} \right\rfloor \scriptstyle \text{=13,} 
\displaystyle \left\lfloor 2^{2^{2^\omega}} \right\rfloor \scriptstyle =16381, \ldots A086238 [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] 1.9287800...
0.46364 76090 00806 11621 Machin–Gregory series[191] \arctan \frac {1}{2}   \underset{\text{For } x = 1/2 \qquad \qquad} {\sum_{n=0}^\infty \frac{(\!-1\!)^n \, x^{2n+1}}{2n+1} = \frac {1}{2} {-} \frac{1}{3 \! \cdot \! 2^3} {+} \frac{1}{5 \! \cdot \! 2^5} {-} \frac{1}{7 \! \cdot \! 2^7} {+} \cdots}
Sum[n=0 to ] 
{(-1)^n (1/2)^(2n+1)
/(2n+1)}
I A073000 [0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...] 0.46364760900080611621425623146121440
0.69777 46579 64007 98200 [Mw 163] Continued fraction constant, Bessel function[192] {C}_{CF}  \frac{I_1(2)}{I_0(2)} = \frac{ \sum \limits_{n = 0}^\infty \frac{n}{n!n!}} {{ \sum \limits_{n = 0}^{\infty} \frac{1}{n!n!}}} =
 \textstyle \tfrac 1{1+\tfrac 1{2+\tfrac 1{3+\tfrac 1{4+\tfrac 1{5+\tfrac 1{6+1{/\cdots}}}}}}}
(Sum [n=0 to ]
{n/(n!n!)}) /
(Sum [n=0 to ]
{1/(n!n!)})
I A052119 [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;p+1], p∈ℕ
0.69777465796400798200679059255175260
1.90216 05831 04 [Mw 164] Brun 2 constant = Σ inverse of Twin primes [193] {B}_{\,2}  \textstyle \underset{ p,\, p+2: \text{ prime}}{\sum(\frac1{p}+\frac1{p+2})} = (\frac1{3} \! + \! \frac1{5}) + (\tfrac1{5} \! + \! \tfrac1{7}) + (\tfrac1{11} \! + \! \tfrac1{13}) + \cdots A065421 [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] 1.902160583104
0.87058 83799 75 [Mw 165] Brun 4 constant = Σ inv.prime quadruplets [194]



{B}_{\,4} \textstyle {\sum(\frac1{p}+\frac1{p+2}+\frac1{p+6}+\frac1{p+8})} \scriptstyle \quad {p,\; p+2,\; p+6,\; p+8: \text{ prime}}

 \textstyle{\left(\tfrac1{5} + \tfrac1{7} + \tfrac1{11} + \tfrac1{13}\right)}+ \left(\tfrac1{11} + \tfrac1{13} + \tfrac1{17} + \tfrac1{19}\right)+ \dots

A213007 [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] 0.870588379975

0.63661 97723 67581 34307 [Mw 166] [Ow 8]

Buffon constant[195] \frac{2}{\pi}  \frac{\sqrt2}2 \cdot \frac{\sqrt{2+\sqrt2}}2 \cdot \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdots Viète product
2/Pi
T A060294 [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] 1540
to
1603
0.63661977236758134307553505349005745
0.59634 73623 23194 07434 [Mw 167] Euler–Gompertz constant [196] {G} \! \int \limits_0^\infty \!\! \frac{e^{-n}}{1{+}n} \, dn = \!\! \int \limits_0^1 \!\! \frac{1}{1{-}\ln n} \, dn =
 \textstyle {\tfrac 1 {1+\tfrac 1{1+\tfrac 1{1+\tfrac 2{1+\tfrac 2{1+\tfrac 3{1+3{/\cdots}} }}}}}}
integral[0 to ]
{(e^-n)/(1+n)}
I A073003 [0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...] 0.59634736232319407434107849936927937
i ··· [Mw 168]
Imaginary number [197] {i} \sqrt{-1} = \frac{\ln(-1)}{\pi} \qquad\qquad \mathrm{e}^{i\,\pi} = -1
sqrt(-1)
C I 1501
to
1576
i
2.74723 82749 32304 33305 Ramanujan nested radical [198]



 R_{5} \scriptstyle \sqrt{5+\sqrt{5+\sqrt{5-\sqrt{5+
                     \sqrt{5+\sqrt{5+\sqrt{5-\cdots}}}}}}}\;=
        \textstyle\frac{2+\sqrt{5}+\sqrt{15-6\sqrt{5}}}{2}
(2+sqrt(5)
+sqrt(15
-6 sqrt(5)))/2
A [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] 2.74723827493230433305746518613420282
0.56714 32904 09783 87299 [Mw 169] Omega constant, Lambert W function [199] {\Omega}  \sum_{n=1}^\infty \frac{(-n)^{n-1}}{n!} 
 =\,\left(\frac{1}{e}\right)
^{\left(\frac{1}{e}\right)
^{\cdot^{\cdot^{\left(\frac{1}{e}\right)}}}}
= e^{-\Omega} = e^{-e^{-e^{\cdot^{\cdot^{{-e}}}}}}
Sum[n=1 to ]
{(-n)^(n-1)/n!}
T A030178 [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...] 0.56714329040978387299996866221035555
0.96894 61462 59369 38048 Beta(3) [200] {\beta} (3)  \frac{\pi^3}{32} = \sum_{n=1}^\infty\frac{-1^{n+1}}{(-1+2n)^3} = \frac{1}{1^3} {-} \frac{1}{3^3} {+} \frac{1}{5^3} {-} \frac{1}{7^3} {+} \cdots
Sum[n=1 to ]
{(-1)^(n+1)
/(-1+2n)^3}
T A153071 [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] 0.96894614625936938048363484584691860
2.23606 79774 99789 69640 Square root of 5, Gauss sum [201]  \sqrt{5}  \scriptstyle  (n = 5) \displaystyle  \sum_{k=0}^{n-1} e^{\frac{2 k^2 \pi i}{n}} = 1 + e^\frac{2 \pi i} {5} + e^\frac{8 \pi i} {5} + e^\frac{18 \pi i} {5} + e^\frac{32 \pi i} {5}
Sum[k=0 to 4]
{e^(2k^2 pi i/5)}
A A002163 [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;4,...]
2.23606797749978969640917366873127624
3.35988 56662 43177 55317 [Mw 170] Prévost constant Reciprocal Fibonacci constant[202]  \Psi \sum_{n=1}^{\infty} \frac{1}{F_n} = \frac{1}{1} +  \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \cdots

Fn: Fibonacci series

Sum[n=1 to ]
{1/Fibonacci[n]}
I A079586 [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] ? 3.35988566624317755317201130291892717
2.68545 20010 65306 44530 [Mw 171] Khinchin's constant [203]  K_{\,0}  \prod_{n=1}^\infty \left[{1+{1\over n(n+2)}}\right]^{\ln n/\ln 2}
Prod[n=1 to ] 
 {(1+1/(n(n+2))) 
 ^(ln(n)/ln(2))}
T A002210 [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] 1934 2.68545200106530644530971483548179569

See also

External links

Notes

  1. Thomas Hales, Samuel Ferguson (2010). Springer, Jeffrey C. Lagarias, ed. The Kepler Conjecture: The Hales-Ferguson Proof. ISBN 978-1-4614-1128-4.
  2. Thomas C. Hales (2014). Math Department, University of Pittsburgh, ed. Introduction to the Flyspeck Project (PDF).
  3. John Derbyshire (2003). Joseph Henry Press, ed. Prime Obsession: Bernhard Riemann and the Greatest unsolved problem. p. 319. ISBN 0-309-08549-7.
  4. Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic. Springer, ed. Orthogonal and diagonal dimension fluxes of hyperspherical function (PDF).
  5. Benoit Mandelbrot (2004). Fractals and Chaos: The Mandelbrot Set and Beyond. ISBN 978-1-4419-1897-0.
  6. Curtis T. McMullen (1997). Hausdorff dimension and conformal dynamics III: Computation of dimension (PDF).
  7. Properties of the Lambert Function W(z) (PDF).
  8. Paul Manneville (2010). Imperial College Press, ed. Instabilities, Chaos and Turbulence. p. 176. ISBN 978-1-84816-392-8.
  9. J.L. Berggren, Jonathan M. Borwein, Peter Borwein (2003). Springer-Verlag, ed. Pi: A Source Book. p. 637. ISBN 0-387-20571-3.
  10. Michael Jacobson,Hugh Williams (2009). Springer, ed. Solving the Pell Equation. p. 159. ISBN 978-0-387-84922-5.
  11. Robin Whitty. Lieb’s Square Ice Theorem (PDF).
  12. Reinhold Remmert (1991). Springer, ed. Theory of Complex Functions. p. 162. ISBN 0-387-97195-5.
  13. Marek Wolf (2010). arxiv.org: 1003.4015, ed. Continued fractions constructed from prime numbers. p. 16.
  14. Steven Finch (2014). Harvard.edu, ed. Electrical Capacitance (PDF). p. 1.
  15. Thomas Ransford. Universite Laval, Quebec (QC), Canada, ed. Computation of Logarithmic Capacity (PDF). p. 557.
  16. RICHARD J. MATHAR (2010). Arxiv.org, ed. NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL BETWEEN 1 AND INFINITY (PDF).
  17. Marvin Ray Burns. RECORD CALCULATIONS OF THE MKB CONSTANT.
  18. Steven Finch (2014). Harvard.edu, ed. Errata and Addenda to Mathematical Constants (PDF). p. 63.
  19. Marius Coman (2013). The Math Encyclopedia of Smarandache type Notions: Vol. I. Number Theory.
  20. David Borwein, Jonathan M. Borwein, and Christopher Pinner (1998). Convergence of Madelung-Like Lattice sums (PDF). AMS. p. Volume 350, Number 8, Pages 3131–3167.
  21. István Mezö (2011). University of Debrecen, Hungary, ed. On the integral of the fourth Jacobi theta function (PDF).
  22. Steven Finch (2007). Mathsoft, ed. Moving Sofa Constant.
  23. Pei-Chu Hu,Chung-Chun (2008). Hong Kong University, ed. Distribution Theory of Algebraic Numbers. p. 246. ISBN 978-3-11-020536-7.
  24. Paulo Ribenboim (2000). Springer, ed. My Numbers, My Friends: Popular Lectures on Number Theory. p. 66. ISBN 0-387-98911-0.
  25. University of Nebraska–Lincoln, ed. (2010). Volume and Surface area of the Spherical Tetrahedron (AKA Reuleaux tetrahedron) by geometrical methods.
  26. Leo Murata (1996). On the Average of the Least Primitive Root Modulo p (PDF). Meijigakuin University.
  27. Ángulo áureo.
  28. Eric W. Weisstein (1999). Michigan State University Libraries, ed. Lebesgue Constants (Fourier Series).
  29. saildart. Vardi.
  30. Robert P. Munafo (2012). Pixel Counting.
  31. Steven R. Finch (2003). Cambridge University Press, ed. Mathematical Constants. p. 287. ISBN 3-540-67695-3.
  32. Dmitrii Kouznetsov (2009). Institute for Laser Science (ILS), (UEC). Japan, ed. SOLUTION OF F(z + 1) = exp F(z) IN COMPLEX z-PLANE (PDF).
  33. Lloyd N. Trefethen (2013). SIAM., ed. Approximation Theory and Approximation Practice. p. 211. ISBN 978-1-611972-39-9.
  34. R. M. ABRAROV AND S. M. ABRAROV (2011). arxiv.org, ed. PROPERTIES AND APPLICATIONS OF THE PRIME DETECTING FUNCTION (PDF). p. 8.
  35. Sergey Kitaev and Toufik Mansour (2007). The problem of the pawns (PDF).
  36. Richard J. Mathar (2013). Circumscribed Regular Polygons (PDF). arxiv.org.
  37. Christoph Lanz. Technischen Universit¨at Wien, ed. k-Automatic Reals (PDF).
  38. NÚMERO DE BRONCE. PROPORCIÓN DE BRONCE (PDF).
  39. SERGI ELIZALDE. Arxiv.org, ed. ASYMPTOTIC ENUMERATION OF PERMUTATIONS AVOIDING GENERALIZED PATTERNS (PDF).
  40. David Cohen (2006). Thomson Learning Inc., ed. Precalculus: With Unit Circle Trigonometry. p. 328. ISBN 0-534-40230-5.
  41. Marek Wolf (2010). Two arguments that the nontrivial zeros of the Riemann zeta function are irrational (PDF). Instytut Fizyki Teoretycznej.
  42. DIVAKAR VISWANATH (1999). RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824... (PDF). MATHEMATICS OF COMPUTATION.
  43. Helmut Brass,Knut Petras (2010). AMS, ed. Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. p. 274. ISBN 978-0-8218-5361-0.
  44. Steven Finch (2007). Harvard University, ed. Continued Fraction Transformation (PDF). p. 7.
  45. Clifford A. Pickover (2009). Sterling Publishing, ed. The Math Book. p. 266. ISBN 978-1-4027-5796-9.
  46. Steven Finch (2004). Harvard.edu, ed. Unitarism and Infinitarism (PDF). p. 1.
  47. Mireille Bousquet-Mélou. CNRS, LaBRI, Bordeaux, France, ed. Two-dimensional self-avoiding walks (PDF).
  48. Hugo Duminil-Copin and Stanislav Smirnov (2011). Universite de Geneve., ed. The connective constant of the honeycomb lattice √ (2 + √ 2) (PDF).
  49. W.A. Coppel (2000). Springer, ed. Number Theory: An Introduction to Mathematics. p. 480. ISBN 978-0-387-89485-0.
  50. James Stuart Tanton (2005). Encyclopedia of Mathematics. p. 529. ISBN 9781438110080.
  51. Robert Baillie (2013). arxiv, ed. Summing The Curious Series of Kempner and Irwin (PDF). p. 9.
  52. Leonhard Euler (1749). Consideratio quarumdam serierum, quae singularibus proprietatibus sunt praeditae. p. 108.
  53. Timothy Gowers, June Barrow-Green, Imre Leade (2007). Princeton University Press, ed. The Princeton Companion to Mathematics. p. 316. ISBN 978-0-691-11880-2.
  54. Vijaya AV (2007). Dorling Kindcrsley (India) Pvt. Lid., ed. Figuring Out Mathematics. p. 15. ISBN 978-81-317-0359-5.
  55. Steven Finch (2014). Harvard.edu, ed. Errata and Addenda to Mathematical Constants (PDF). p. 59.
  56. Steven Finch (2007). Harvard.edu, ed. Series involving Arithmetric Functions (PDF). p. 1.
  57. Nayar. Tata McGraw-Hill Education., ed. The Steel Handbook. p. 953.
  58. ECKFORD COHEN (1962). University of Tennessee, ed. SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS (PDF). p. 220.
  59. Paul B. Slater (2013). University of California, ed. A Hypergeometric Formula ... (PDF). p. 9.
  60. Ivan Niven. Averages of exponents in factoring integers (PDF).
  61. Steven Finch (2014). Harvard.edu, ed. Errata and Addenda to Mathematical Constants (PDF).
  62. Steven Finch (2014). Harvard.edu, ed. Errata and Addenda to Mathematical Constants (PDF). p. 53.
  63. FRANZ LEMMERMEYER (2003). arxiv.org, ed. HIGHER DESCENT ON PELL CONICS. I. FROM LEGENDRE TO SELMER (PDF). p. 13.
  64. Howard Curtis (2014). Elsevier, ed. Orbital Mechanics for Engineering Students. p. 159. ISBN 978-0-08-097747-8.
  65. Andrew Granville and K. Soundararajan (1999). Arxiv, ed. The spectrum of multiplicative functions (PDF). p. 3.
  66. John Horton Conway, Richard K. Guy (1995). Copernicus, ed. The Book of Numbers. p. 242. ISBN 0-387-97993-X.
  67. John Derbyshire (2003). Joseph Henry Press, ed. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. p. 147. ISBN 0-309-08549-7.
  68. Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadelantl, William B. Jones. (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 188. ISBN 978-1-4020-6948-2.
  69. Henri Cohen (2000). Number Theory: Volume II: Analytic and Modern Tools. Springer. p. 127. ISBN 978-0-387-49893-5.
  70. H. M. Srivastava,Choi Junesang (2001). Series Associated With the Zeta and Related Functions. Kluwer Academic Publishers. p. 30. ISBN 0-7923-7054-6.
  71. E. Catalan (1864). Mémoire sur la transformation des séries, et sur quelques intégrales définies, Comptes rendus hebdomadaires des séances de l’Académie des sciences 59. Kluwer Academic éditeurs. p. 618.
  72. Lennart Råde,Bertil (2000). Springer-Verlag, ed. Mathematics Handbook for Science and Engineering. p. 423. ISBN 3-540-21141-1.
  73. J. B. Friedlander, A. Perelli, C. Viola, D.R. Heath-Brown, H.Iwaniec, J. Kaczorowski (2002). Springer, ed. Analytic Number Theory. p. 29. ISBN 978-3-540-36363-7.
  74. William Dunham (2005). Princeton University Press, ed. The Calculus Gallery: Masterpieces from Newton to Lebesgue. p. 51. ISBN 978-0-691-09565-3.
  75. Jean Jacquelin (2010). SOPHOMORE'S DREAM FUNCTION.
  76. Simon Plouffe. Sum of the product of inverse of primes.
  77. Simon Plouffe (1998). Université du Québec à Montréal, ed. The Computation of Certain Numbers Using a Ruler and Compass. p. Vol. 1 (1998), Article 98.1.3.
  78. John Srdjan Petrovic (2014). CRC Press, ed. Advanced Calculus: Theory and Practice. p. 65. ISBN 978-1-4665-6563-0.
  79. Steven R. Finch (1999). Several Constants Arising in Statistical Mechanics (PDF). p. 5.
  80. Federico Ardila, Richard Stanley. Department of Mathematics, MIT, Cambridge, ed. Several Constants Arising in Statistical Mechanics (PDF).
  81. Andrija S. Radovic. A REPRESENTATION OF FACTORIAL FUNCTION, THE NATURE OF CONSTAT AND A WAY FOR SOLVING OF FUNCTIONAL EQUATION F(x) = x . F(x - 1) (PDF).
  82. Kunihiko Kaneko,Ichiro Tsuda (1997). Complex Systems: Chaos and Beyond. p. 211. ISBN 3-540-67202-8.
  83. Steven Finch (2005). Harvard University, ed. Minkowski-Siegel Mass Constants (PDF). p. 5.
  84. University of Florida, Department of Mechanical and Aerospace Engineering (ed.). Evaluation of the complete elliptic integrals by the agm method (PDF).
  85. Steven R. Finch (2003). Cambridge University Press, ed. Mathematical Constants. p. 479. ISBN 3-540-67695-3.
  86. Facts On File, Incorporated (1997). Mathematics Frontiers. p. 46. ISBN 978-0-8160-5427-5.
  87. Aleksandr I͡Akovlevich Khinchin (1997). Courier Dover Publications, ed. Continued Fractions. p. 66. ISBN 978-0-486-69630-0.
  88. Jean-Pierre Serre (1969–1970). Travaux de Baker (PDF). NUMDAM, Séminaire N. Bourbaki. p. 74.
  89. Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 31. ISBN 9780691141336.
  90. Horst Alzer (2002). Journal of Computational and Applied Mathematics, Volume 139, Issue 2 (PDF). Elsevier. pp. 215–230.
  91. Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 238. ISBN 3-540-67695-3.
  92. Steven Finch (2007). Continued Fraction Transformation III (PDF). Harvard University. p. 5.
  93. Andrei Vernescu (2007). Gazeta Matemetica Seria a revista de cultur Matemetica Anul XXV(CIV)Nr. 1, Constante de tip Euler generalízate (PDF). p. 14.
  94. Mauro Fiorentini. Nielsen – Ramanujan (costanti di).
  95. Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, William B. Jones (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 182. ISBN 978-1-4020-6948-2.
  96. Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 1-58488-347-2.
  97. P. HABEGGER (2003). MULTIPLICATIVE DEPENDENCE AND ISOLATION I (PDF). Institut für Mathematik, Universit¨at Basel, Rheinsprung Basel, Switzerland. p. 2.
  98. Steven Finch (2005). Class Number Theory (PDF). Harvard University. p. 8.
  99. James Stewart (2010). Single Variable Calculus: Concepts and Contexts. Brooks/Cole. p. 314. ISBN 978-0-495-55972-6.
  100. Steven Finch (2005). Class Number Theory (PDF). Harvard University. p. 8.
  101. Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 421. ISBN 3-540-67695-3.
  102. Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 122. ISBN 3-540-67695-3.
  103. Jorg Waldvogel (2008). Analytic Continuation of the Theodorus Spiral (PDF). p. 16.
  104. Robert Kaplan,Ellen Kaplan (2014). Oxford University Press, Bloomsburv Press, ed. The Art of the Infinite: The Pleasures of Mathematics. p. 238. ISBN 978-1-60819-869-6.
  105. Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 121. ISBN 3-540-67695-3.
  106. Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1356.
  107. Chebfun Team (2010). Lebesgue functions and Lebesgue constants. MATLAB Central.
  108. Simon J. Smith (2005). Lebesgue constants in polynomial interpolation. La Trobe University, Bendigo, Australia.
  109. D. R. Woodall (2005). University of Nottingham, ed. CHROMATIC POLYNOMIALS OF PLANE TRIANGULATIONS (PDF). p. 5.
  110. Benjamin Klopsch (2013). NOTE DI MATEMATICA: Representation growth and representation zeta functions of groups (PDF). Universita del Salento. p. 114. ISSN 1590-0932.
  111. Nikos Bagis. Some New Results on Prime Sums (3 The Euler Totient constant) (PDF). Aristotle University of Thessaloniki. p. 8.
  112. Robinson, H.P. (1971–2011). MATHEMATICAL CONSTANTS. Lawrence Berkeley National Laboratory. p. 40.
  113. Annmarie McGonagle (2011). A New Parameterization for Ford Circles (PDF). Plattsburgh State University of New York.
  114. V. S. Varadarajan (2000). Euler Through Time: A New Look at Old Themes. AMS. ISBN 0-8218-3580-7.
  115. Leonhard Euler, Joseph Louis Lagrange (1810). Elements of Algebra, Volumen 1. J. Johnson and Company. p. 333.
  116. Ian Stewart (1996). Professor Stewart's Cabinet of Mathematical Curiosities. Birkhäuser Verlag. ISBN 978-1-84765-128-0.
  117. H.M. Antia (2000). Numerical Methods for Scientists and Engineers. Birkhäuser Verlag. p. 220. ISBN 3-7643-6715-6.
  118. Francisco J. Aragón Artacho, David H. Baileyy, Jonathan M. Borweinz, Peter B. Borwein (2012). Tools for visualizing real numbers. (PDF). p. 33.
  119. Papierfalten (PDF). 1998.
  120. Sondow, Jonathan; Hadjicostas, Petros (2008). "The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant". Journal of Mathematical Analysis and Applications 332: 292–314. arXiv:math/0610499. doi:10.1016/j.jmaa.2006.09.081.
  121. J. Sondow. Generalization of Somos Quadratic (PDF).
  122. Chan Wei Ting ... Moire patterns + fractals (PDF). p. 16.
  123. Christoph Zurnieden (2008). Descriptions of the Algorithms (PDF).
  124. Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 64. ISBN 9780691141336.
  125. Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 466. ISBN 3-540-67695-3.
  126. James Stuart Tanton (2007). Encyclopedia of Mathematics. p. 458. ISBN 0-8160-5124-0.
  127. Calvin C. Clawson (2003). Mathematical Traveler: Exploring the Grand History of Numbers. Perseus. p. 187. ISBN 0-7382-0835-3.
  128. Jonathan Sondowa, Diego Marques (2010). Algebraic and transcendental solutions of some exponential equations (PDF). Annales Mathematicae et Informaticae.
  129. T. Piezas. Tribonacci constant & Pi.
  130. Steven Finch. Addenda to Mathematical Constants (PDF).
  131. Renzo Sprugnoli. Introduzione alla Matematica (PDF).
  132. Chao-Ping Chen. Ioachimescu's constant (PDF).
  133. R. A. Knoebel. Exponentials Reiterated (PDF). Maa.org.
  134. Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1688. ISBN 1-58488-347-2.
  135. Richard J.Mathar. Table of Dirichlet L-series and Prime Zeta (PDF). Arxiv.
  136. Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 1-58488-347-2.
  137. Dave Benson (2006). Music: A Mathematical Offering. Cambridge University Press. p. 53. ISBN 978-0-521-85387-3.
  138. Yann Bugeaud (2012). Distribution Modulo One and Diophantine Approximation. Cambridge University Press. p. 87. ISBN 978-0-521-11169-0.
  139. Angel Chang y Tianrong Zhang. On the Fractal Structure of the Boundary of Dragon Curve.
  140. Joe Diestel (1995). Absolutely Summing Operators. Cambridge University Press. p. 29. ISBN 0-521-43168-9.
  141. Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1356. ISBN 1-58488-347-2.
  142. Laith Saadi (2004). Stealth Ciphers. Trafford Publishing. p. 160. ISBN 978-1-4120-2409-9.
  143. Jonathan Borwein,David Bailey (2008). Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century. A K Peters, Ltd. p. 56. ISBN 978-1-56881-442-1.
  144. L. J. Lloyd James Peter Kilford (2008). Modular Forms: A Classical and Computational Introduction. Imperial College Press. p. 107. ISBN 978-1-84816-213-6.
  145. Continued Fractions from Euclid till Present. IHES, Bures sur Yvette. 1998.
  146. Julian Havil (2012). The Irrationals: A Story of the Numbers You Can't Count On. Princeton University Press. p. 98. ISBN 978-0-691-14342-2.
  147. Lennart R©Æde,Bertil Westergren (2004). Mathematics Handbook for Science and Engineering. Springer-Verlag. p. 194. ISBN 3-540-21141-1.
  148. Michael Trott. Finding Trott Constants (PDF). Wolfram Research.
  149. David Darling (2004). The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. Wiley & Sons inc. p. 63. ISBN 0-471-27047-4.
  150. Keith B. Oldham,Jan C. Myland,Jerome Spanier (2009). An Atlas of Functions: With Equator, the Atlas Function Calculator. Springer. p. 15. ISBN 978-0-387-48806-6.
  151. Johann Georg Soldner (1809). Lindauer, München, ed. Théorie et tables d’une nouvelle fonction transcendante (in French). p. 42.
  152. Lorenzo Mascheroni (1792). Petrus Galeatius, Ticini, ed. Adnotationes ad calculum integralem Euleri (in Latin). p. 17.
  153. Yann Bugeaud (2004). Series representations for some mathematical constants. p. 72. ISBN 0-521-82329-3.
  154. Calvin C Clawson (2001). Mathematical sorcery: revealing the secrets of numbers. p. IV. ISBN 978 0 7382 0496-3.
  155. H.M. Antia (2000). Numerical Methods for Scientists and Engineers. Birkhäuser Verlag. p. 220. ISBN 3-7643-6715-6.
  156. Bart Snapp (2012). Numbers and Algebra (PDF).
  157. George Gheverghese Joseph (2011). The Crest of the Peacock: Non-European Roots of Mathematics. Princeton University Press. p. 295. ISBN 978-0-691-13526-7.
  158. Steven Finch. Volumes of Hyperbolic 3-Manifolds (PDF). Harvard University.
  159. J. Coates,Martin J. Taylor (1991). L-Functions and Arithmetic. Cambridge University Press. p. 333. ISBN 0-521-38619-5.
  160. Horst Alzera, Dimitri Karayannakisb, H.M. Srivastava (2005). Series representations for some mathematical constants. Elsevier Inc. p. 149.
  161. Steven R. Finch (2005). Quadratic Dirichlet L-Series (PDF). p. 12.
  162. Refaat El Attar (2006). Special Functions And Orthogonal Polynomials. Lulu Press. p. 58. ISBN 1-4116-6690-9.
  163. Jesus Guillera and Jonathan Sondow. arxiv.org, ed. Double integrals and infinite products... (PDF).
  164. Andras Bezdek (2003). Discrete Geometry. Marcel Dekkcr, Inc. p. 150. ISBN 0-8247-0968-3.
  165. H. M. Srivastava,Junesang Choi (2012). Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier. p. 613. ISBN 978-0-12-385218-2.
  166. Weisstein, Eric W. Rényi's Parking Constants. MathWorld. p. (4).
  167. H. K. Kuiken (2001). Practical Asymptotics. KLUWER ACADEMIC PUBLISHERS. p. 162. ISBN 0-7923-6920-3.
  168. Eli Maor (2006). e: The Story of a Number. Princeton University Press. ISBN 0-691-03390-0.
  169. Clifford A. Pickover (2005). A Passion for Mathematics. John Wiley & Sons, Inc. p. 90. ISBN 0-471-69098-8.
  170. Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 322. ISBN 3-540-67695-3.
  171. Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1688. ISBN 1-58488-347-2.
  172. Richard E. Crandall (2012). Unified algorithms for polylogarithm, L-series, and zeta variants (PDF). perfscipress.com.
  173. RICHARD J. MATHAR (2010). NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY (PDF). Arxiv.org.
  174. M.R.Burns (1999). Root constant. Marvin Ray Burns.
  175. Michel A. Théra (2002). Constructive, Experimental, and Nonlinear Analysis. CMS-AMS. p. 77. ISBN 0-8218-2167-9.
  176. Kathleen T. Alligood (1996). Chaos: An Introduction to Dynamical Systems. Springer. ISBN 0-387-94677-2.
  177. K. T. Chau,Zheng Wang (201). Chaos in Electric Drive Systems: Analysis, Control and Application. John Wiley & Son. p. 7. ISBN 978-0-470-82633-1.
  178. Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics. Crc Press. p. 1212.
  179. David Wells (1997). The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books Ltd. p. 4.
  180. Jvrg Arndt,Christoph Haenel. Pi: Algorithmen, Computer, Arithmetik. Springer. p. 67. ISBN 3-540-66258-8.
  181. Steven R. Finch (2003). Mathematical Constants. p. 110. ISBN 3-540-67695-3.
  182. Holger Hermanns,Roberto Segala (2000). Process Algebra and Probabilistic Methods. Springer-Verlag. p. 270. ISBN 3-540-67695-3.
  183. Michael J. Dinneen,Bakhadyr Khoussainov,Prof. Andre Nies (2012). Computation, Physics and Beyond. Springer. p. 110. ISBN 978-3-642-27653-8.
  184. Richard E. Crandall,Carl B. Pomerance (2005). Prime Numbers: A Computational Perspective. Springer. p. 80. ISBN 978-0387-25282-7.
  185. E.Kasner y J.Newman. (2007). Mathematics and the Imagination. Conaculta. p. 77. ISBN 978-968-5374-20-0.
  186. Eli Maor (1994). "e": The Story of a Number. Princeton University Press. p. 37. ISBN 978-0-691-14134-3.
  187. Theo Kempermann (2005). Zahlentheoretische Kostproben. Freiburger graphische betriebe. p. 139. ISBN 3-8171-1780-9.
  188. Steven Finch (2003). Mathematical Constants. Cambridge University Press. p. 449. ISBN 0-521-81805-2.
  189. Michael Trott (2004). The Mathematica GuideBook for Programming. Springer Science. p. 173. ISBN 0-387-94282-3.
  190. Paulo Ribenboim (2000). My Numbers, My Friends: Popular Lectures on Number Theory. Springer-Verlag. p. 66. ISBN 0-387-98911-0.
  191. John Horton Conway, Richard K. Guy. (1995). The Book of Numbers. Copernicus. p. 242. ISBN 0-387-97993-X.
  192. Simon Plouffe. Miscellaneous Mathematical Constants.
  193. Thomas Koshy (2007). Elementary Number Theory with Applications. Elsevier. p. 119. ISBN 978-0-12-372-487-8.
  194. Pascal Sebah and Xavier Gourdon (2002). Introduction to twin primes and Brun’s constant computation (PDF).
  195. Jorg Arndt,Christoph Haenel (2000). Pi -- Unleashed. Verlag Berlin Heidelberg. p. 13. ISBN 3-540-66572-2.
  196. Annie Cuyt, Viadis Brevik Petersen, Brigitte Verdonk, William B. Jones (2008). Handbook of continued fractions for special functions. Springer Science. p. 190. ISBN 978-1-4020-6948-2.
  197. Keith J. Devlin (1999). Mathematics: The New Golden Age. Columbia University Press. p. 66. ISBN 0-231-11638-1.
  198. Bruce C. Berndt,Robert Alexander Rankin (2001). Ramanujan: essays and surveys. American Mathematical Society, London Mathematical Society. p. 219. ISBN 0-8218-2624-7.
  199. Albert Gural. Infinite Power Towers.
  200. Michael A. Idowu (2012). Fundamental relations between the Dirichlet beta function, euler numbers, and Riemann zeta function for positive integers. arXiv. p. 1.
  201. P A J Lewis (2008). Essential Mathematics 9. Ratna Sagar. p. 24. ISBN 9788183323673.
  202. Gérard P. Michon (2005). Numerical Constants. Numericana.
  203. Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 161. ISBN 9780691141336.

Site MathWorld Wolfram.com

  1. Weisstein, Eric W., "Hypersphere Packing", MathWorld.
  2. Weisstein, Eric W., "Fransen-Robinson Constant", MathWorld.
  3. Weisstein, Eric W., "Apollonian Gasket", MathWorld.
  4. Weisstein, Eric W., "PowerTower", MathWorld.
  5. Weisstein, Eric W., "TwinPrimes", MathWorld.
  6. Weisstein, Eric W., "Cantor Set", MathWorld.
  7. Weisstein, Eric W., "Plouffe's Constant", MathWorld.
  8. Weisstein, Eric W., "Tree Searching", MathWorld.
  9. Weisstein, Eric W., "Liebs Square Ice Constant", MathWorld.
  10. Weisstein, Eric W., "i", MathWorld.
  11. Weisstein, Eric W., "Hyperbolic Tangent", MathWorld.
  12. Weisstein, Eric W., "Chebyshev Constants", MathWorld.
  13. Weisstein, Eric W., "Delian Constant", MathWorld.
  14. Weisstein, Eric W., "Smarandache Constants", MathWorld.
  15. Weisstein, Eric W., "/Double Factorial", MathWorld.
  16. Weisstein, Eric W., "Madelung Constant", MathWorld.
  17. Weisstein, Eric W., "Log Gamma Function", MathWorld.
  18. Weisstein, Eric W., "Moving Sofa Problem", MathWorld.
  19. Weisstein, Eric W., "Salem Constants", MathWorld.
  20. Weisstein, Eric W., "Artin's Constant", MathWorld.
  21. Weisstein, Eric W., "/Reuleaux Tetrahedron", MathWorld.
  22. Weisstein, Eric W., "Dragon Curve", MathWorld.
  23. Weisstein, Eric W., "Paris Constant", MathWorld.
  24. Weisstein, Eric W., "Golden Angle", MathWorld.
  25. Weisstein, Eric W., "Lebesgue Constants", MathWorld.
  26. Weisstein, Eric W., "Sylvester's Sequence", MathWorld.
  27. Weisstein, Eric W., "Mandelbrot Set", MathWorld.
  28. Weisstein, Eric W., "Exponential Factorial", MathWorld.
  29. Weisstein, Eric W., "Goh-Schmutz Constant", MathWorld.
  30. Weisstein, Eric W., "Bernstein´s Constant", MathWorld.
  31. Weisstein, Eric W., "Twin Primes Constant", MathWorld.
  32. Weisstein, Eric W., "Fibonacci Factorial Constant", MathWorld.
  33. Weisstein, Eric W., "Polygon Inscribing", MathWorld.
  34. Weisstein, Eric W., "Komornik-Loreti Constant", MathWorld.
  35. Weisstein, Eric W., "Silver Ratio", MathWorld.
  36. Weisstein, Eric W., "Disk Covering Problem", MathWorld.
  37. Weisstein, Eric W., "Gelfond-Schneider Constant", MathWorld.
  38. Weisstein, Eric W., "Levy Constant", MathWorld.
  39. Weisstein, Eric W., "Chi", MathWorld.
  40. Weisstein, Eric W., "Random Fibonacci Sequence", MathWorld.
  41. Weisstein, Eric W., "Favard Constants", MathWorld.
  42. Weisstein, Eric W., "Lochs' Constant", MathWorld.
  43. Weisstein, Eric W., "Reuleaux Triangle", MathWorld.
  44. Weisstein, Eric W., "Self-Avoiding Walk Connective Constant", MathWorld.
  45. Weisstein, Eric W., "Gauss-Kuzmin-Wirsing Constant", MathWorld.
  46. Weisstein, Eric W., "Wallis Formula", MathWorld.
  47. Weisstein, Eric W., "Erdos-Borwein Constant", MathWorld.
  48. Weisstein, Eric W., "Golden Ratio", MathWorld.
  49. Weisstein, Eric W., "Riemann Zeta Function Zeta 2", MathWorld.
  50. Weisstein, Eric W., "Theodorus's Constant", MathWorld.
  51. Weisstein, Eric W., "Nested Radical Constant", MathWorld.
  52. Weisstein, Eric W., "Universal Parabolic Constant", MathWorld.
  53. Weisstein, Eric W., "Silverman Constant", MathWorld.
  54. Weisstein, Eric W., "Twenty-Vertex Entropy Constant", MathWorld.
  55. Weisstein, Eric W., "Feller-Tornier Constant", MathWorld.
  56. Weisstein, Eric W., "Baxter's Four-Coloring Constant", MathWorld.
  57. Weisstein, Eric W., "Tetranacci Constant", MathWorld.
  58. Weisstein, Eric W., "Prince Rupert's Cube", MathWorld.
  59. Weisstein, Eric W., "Niven's Constant", MathWorld.
  60. Weisstein, Eric W., "Central Binomial Coefficient", MathWorld.
  61. Weisstein, Eric W., "Hermite Constants", MathWorld.
  62. Weisstein, Eric W., "Thue-Morse Constant", MathWorld.
  63. Weisstein, Eric W., "Pell Constant", MathWorld.
  64. Weisstein, Eric W., "Laplace Limit", MathWorld.
  65. Weisstein, Eric W., "Hall-Montgomery Constant", MathWorld.
  66. Weisstein, Eric W., "Calabi's Triangle", MathWorld.
  67. Weisstein, Eric W., "Gamma Function", MathWorld.
  68. Weisstein, Eric W., "Apery's Constant", MathWorld.
  69. Weisstein, Eric W., "Catalan's Constant", MathWorld.
  70. Weisstein, Eric W., "Dirichlet Beta Function", MathWorld.
  71. Weisstein, Eric W., "Heath-Brown-Moroz Constant", MathWorld.
  72. Weisstein, Eric W., "Sophomore's Dream", MathWorld.
  73. Weisstein, Eric W., "Sophomore's Dream", MathWorld.
  74. Weisstein, Eric W., "Primorial", MathWorld.
  75. Weisstein, Eric W., "Plouffe's Constants", MathWorld.
  76. Weisstein, Eric W., "Plouffe's Constants", MathWorld.
  77. Weisstein, Eric W., "Domino Tiling", MathWorld.
  78. Weisstein, Eric W., "Wallis's Constant", MathWorld.
  79. Weisstein, Eric W., "Sarnak's Constant", MathWorld.
  80. Weisstein, Eric W., "e", MathWorld.
  81. Weisstein, Eric W., "Lemniscate Constant", MathWorld.
  82. Weisstein, Eric W., "Robbins Constant", MathWorld.
  83. Weisstein, Eric W., "Conway's Constant", MathWorld.
  84. Weisstein, Eric W., "Levy Constant", MathWorld.
  85. Weisstein, Eric W., "Kempner Series", MathWorld.
  86. Weisstein, Eric W., "Lebesgue Constants", MathWorld.
  87. Weisstein, Eric W., "Du Bois Reymond Constants", MathWorld.
  88. Weisstein, Eric W., "Lüroth's Constant", MathWorld.
  89. Weisstein, Eric W., "Foias Constant", MathWorld.
  90. Weisstein, Eric W., "Foias Constant", MathWorld.
  91. Weisstein, Eric W., "Nielsen-Ramanujan Constants", MathWorld.
  92. Weisstein, Eric W., "Natural Logarithm of 2", MathWorld.
  93. Weisstein, Eric W., "Weierstrass Constant", MathWorld.
  94. Weisstein, Eric W., "Euler–Mascheroni Constant", MathWorld.
  95. Weisstein, Eric W., "Golden Spiral", MathWorld.
  96. Weisstein, Eric W., "Stephen's Constant", MathWorld.
  97. Weisstein, Eric W., "Dottie Number", MathWorld.
  98. Weisstein, Eric W., "Euler Product", MathWorld.
  99. Weisstein, Eric W., "Lemniscate Case", MathWorld.
  100. Weisstein, Eric W., "i", MathWorld.
  101. Weisstein, Eric W., "Alladi-Grinstead Constants", MathWorld.
  102. Weisstein, Eric W., "Sierpinski Constant", MathWorld.
  103. Weisstein, Eric W., "Lebesgue Constants", MathWorld.
  104. Weisstein, Eric W., "Silver Constant", MathWorld.
  105. Weisstein, Eric W., "Totient Summatory Function", MathWorld.
  106. Weisstein, Eric W., "Ford Circle", MathWorld.
  107. Weisstein, Eric W., "Riemann Zeta Function", MathWorld.
  108. Weisstein, Eric W., "Plastic Constant", MathWorld.
  109. Weisstein, Eric W., "Paper Folding Constant", MathWorld.
  110. Weisstein, Eric W., "Paper Folding Constant", MathWorld.
  111. Weisstein, Eric W., "Koch Snowflake", MathWorld.
  112. Weisstein, Eric W., "Mertens Constant", MathWorld.
  113. Weisstein, Eric W., "Liouville's Constant", MathWorld.
  114. Weisstein, Eric W., "Power Tower", MathWorld.
  115. Weisstein, Eric W., "Power Tower", MathWorld.
  116. Weisstein, Eric W., "Masser-Gramain Constant", MathWorld.
  117. Weisstein, Eric W., "Bifoliate", MathWorld.
  118. Weisstein, Eric W., "Backhouse's Constant", MathWorld.
  119. Weisstein, Eric W., "Wilbraham-Gibbs Constant", MathWorld.
  120. Weisstein, Eric W., "Copeland-Erdos Constant", MathWorld.
  121. Weisstein, Eric W., "Dragon Curve", MathWorld.
  122. Weisstein, Eric W., "Grothendieck's Constant", MathWorld.
  123. Weisstein, Eric W., "Pascal's Triangle", MathWorld.
  124. Weisstein, Eric W., "Mills Constant", MathWorld.
  125. Weisstein, Eric W., "Figure Eight Knot", MathWorld.
  126. Weisstein, Eric W., "Ramanujan Constant", MathWorld.
  127. Weisstein, Eric W., "KhinchinHarmonicMean", MathWorld.
  128. Weisstein, Eric W., "Riemann Zeta Constant", MathWorld.
  129. Weisstein, Eric W., "Trott Constant", MathWorld.
  130. Weisstein, Eric W., "Chaitin's Constant", MathWorld.
  131. Weisstein, Eric W., "Gauss's Constant", MathWorld.
  132. Weisstein, Eric W., "Soldner's Constant", MathWorld.
  133. Weisstein, Eric W., "Cahen's Constant", MathWorld.
  134. Weisstein, Eric W., "Pythagoras's Constant", MathWorld.
  135. Weisstein, Eric W., "Carlson-Levin Constant", MathWorld.
  136. Weisstein, Eric W., "Gieseking's Constant", MathWorld.
  137. Weisstein, Eric W., "Lemniscate Constant", MathWorld.
  138. Weisstein, Eric W., "Glaisher-Kinkelin Constant", MathWorld.
  139. Weisstein, Eric W., "Gausss Digamma Theorem", MathWorld.
  140. Weisstein, Eric W., "Carefree Couple", MathWorld.
  141. Weisstein, Eric W., "Gamma Function", MathWorld.
  142. Weisstein, Eric W., "SomossQuadraticRecurrence Constant", MathWorld.
  143. Weisstein, Eric W., "Euler–Mascheroni Constant", MathWorld.
  144. Weisstein, Eric W., "Renyi's Parking Constant", MathWorld.
  145. Weisstein, Eric W., "Steiner's Problem", MathWorld.
  146. Weisstein, Eric W., "Power Tower", MathWorld.
  147. Weisstein, Eric W., "Polya's Random Walk Constant", MathWorld.
  148. Weisstein, Eric W., "Landau Constant", MathWorld.
  149. Weisstein, Eric W., "MRB Constant", MathWorld.
  150. Weisstein, Eric W., "Porter's Constant", MathWorld.
  151. Weisstein, Eric W., "Feigenbaum Constant", MathWorld.
  152. Weisstein, Eric W., "Feigenbaum Constant", MathWorld.
  153. Weisstein, Eric W., "Golomb-Dickman Constant", MathWorld.
  154. Weisstein, Eric W., "Gelfonds Constant", MathWorld.
  155. Weisstein, Eric W., "Hafner-Sarnak-McCurley Constant", MathWorld.
  156. Weisstein, Eric W., "Relatively Prime", MathWorld.
  157. Weisstein, Eric W., "Champernowne Constant", MathWorld.
  158. Weisstein, Eric W., "Landau-Ramanujan Constant", MathWorld.
  159. Weisstein, Eric W., "e", MathWorld.
  160. Weisstein, Eric W., "Factorial Sums", MathWorld.
  161. Weisstein, Eric W., "Pi Formulas", MathWorld.
  162. Weisstein, Eric W., "PrimeFormulas", MathWorld.
  163. Weisstein, Eric W., "ContinuedFraction Constant", MathWorld.
  164. Weisstein, Eric W., "Brun's Constant", MathWorld.
  165. Weisstein, Eric W., "Brun's Constant", MathWorld.
  166. Weisstein, Eric W., "Prime Products", MathWorld.
  167. Weisstein, Eric W., "Gompertz Constant", MathWorld.
  168. Weisstein, Eric W., "i", MathWorld.
  169. Weisstein, Eric W., "Omega Constant", MathWorld.
  170. Weisstein, Eric W., "Reciprocal Fibonacci Constant", MathWorld.
  171. Weisstein, Eric W., "Khinchin's Constant", MathWorld.

Site Oeis Wiki

This article is issued from Wikipedia - version of the Saturday, April 09, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.