Maximal arc

A Maximal arc in a finite projective plane is a largest possible (k,d)-arc in that projective plane. If the finite projective plane has order q (there are q+1 points on any line), then for a maximal arc, k, the number of points of the arc, is the maximum possible (= qd + d - q) with the property that no d+1 points of the arc lie on the same line.

Definition

Let \pi be a finite projective plane of order q (not necessarily desarguesian). Maximal arcs of degree d ( 2 ≤ dq- 1) are (k,d)-arcs in \pi, where k is maximal with respect to the parameter d, in other words, k = qd + d - q.

Equivalently, one can define maximal arcs of degree d in \pi as non-empty sets of points K such that every line intersects the set either in 0 or d points.

Some authors permit the degree of a maximal arc to be 1, q or even q+ 1.[1] Letting K be a maximal (k, d)-arc in a projective plane of order q, if

All of these cases are considered to be trivial examples of maximal arcs, existing in any type of projective plane for any value of q. When 2 ≤ dq- 1, the maximal arc is called non-trivial, and the definition given above and the properties listed below all refer to non-trivial maximal arcs.

Properties

Partial geometries

One can construct partial geometries, derived from maximal arcs:[5]

Notes

References

This article is issued from Wikipedia - version of the Saturday, May 24, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.