Mechanotaxis

Mechanotaxis refers to the directed movement of cell motility via mechanical cues (e.g., fluidic shear stress, substrate stiffness gradients, etc.).[1][2][3] In response to fluidic shear stress, for example, cells have been shown to migrate in the direction of the fluid flow.[4][5]

A subset of mechanotaxis - termed durotaxis - refers specifically to cell migration guided by gradients in substrate rigidity (i.e. stiffness).[6][7] The observation that certain cell types seeded on a substrate rigidity gradient migrate up the gradient (i.e. in the direction of increasing substrate stiffness) was first reported by Lo et al.[8] The primary method for creating rigidity gradients for cells (e.g., in biomaterials) consists of altering the degree of cross-linking in polymers to adjust substrate stiffness.[9][10] Alternative substrate rigidity gradients include micropost array gradients, where the stiffness of individual microposts is increased in a single, designed direction.[11]

See also

References

  1. Li, S. (March 19, 2002). "The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells". Proceedings of the National Academy of Sciences 99 (6): 3546–3551. doi:10.1073/pnas.052018099.
  2. LO, C (1 July 2000). "Cell Movement Is Guided by the Rigidity of the Substrate". Biophysical Journal 79 (1): 144–152. doi:10.1016/S0006-3495(00)76279-5. PMC 1300921. PMID 10866943.
  3. Mak, M., Spill, F., Kamm, R. D., & Zaman, M. H. (2015). Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. Journal of biomechanical engineering. dx.doi.org/10.1115/1.4032188
  4. Li, S. (March 19, 2002). "The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells". Proceedings of the National Academy of Sciences 99 (6): 3546–3551. doi:10.1073/pnas.052018099.
  5. Hsu, Steve; Thakar, Rahul; Liepmann, Dorian; Li, Song (11 November 2005). "Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces". Biochemical and Biophysical Research Communications 337 (1): 401–409. doi:10.1016/j.bbrc.2005.08.272. PMID 16188239.
  6. LO, C (1 July 2000). "Cell Movement Is Guided by the Rigidity of the Substrate". Biophysical Journal 79 (1): 144–152. doi:10.1016/S0006-3495(00)76279-5. PMC 1300921. PMID 10866943.
  7. Sochol, Ryan D.; Higa, Adrienne T.; Janairo, Randall R. R.; Li, Song; Lin, Liwei (1 January 2011). "Unidirectional mechanical cellular stimuli via micropost array gradients". Soft Matter 7 (10): 4606. doi:10.1039/C1SM05163F.
  8. Lo, C (1 July 2000). "Cell Movement Is Guided by the Rigidity of the Substrate". Biophysical Journal 79 (1): 144–152. doi:10.1016/S0006-3495(00)76279-5. PMC 1300921. PMID 10866943.
  9. Gray, Darren S.; Tien, Joe; Chen, Christopher S. (1 September 2003). "Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus". Journal of Biomedical Materials Research 66A (3): 605–614. doi:10.1002/jbm.a.10585.
  10. Wong, Joyce Y.; Velasco, Alan; Rajagopalan, Padmavathy; Pham, Quynh (1 March 2003). "Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels". Langmuir 19 (5): 1908–1913. doi:10.1021/la026403p.
  11. Sochol, Ryan D.; Higa, Adrienne T.; Janairo, Randall R. R.; Li, Song; Lin, Liwei (1 January 2011). "Unidirectional mechanical cellular stimuli via micropost array gradients". Soft Matter 7 (10): 4606. doi:10.1039/C1SM05163F.


This article is issued from Wikipedia - version of the Tuesday, February 16, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.