Metallofullerene

In chemistry, a metallofullerene is a molecule composed of a metal atom trapped inside a fullerene cage.

Simple metallofullerenes consist of a fullerene cage, typically C
80
, with one or two metal atoms trapped inside. Recently, research has produced metallofullerenes that enclose small clusters of atoms, such as Sc
3
N@C
80
, Y
3
N@C
80
, and Sc
3
C
2
@C
80
. The '@' symbol in the formula indicates that the atom(s) are encapsulated inside the cage, rather than being chemically bonded to it.

Fullerenes in a variety of sizes have been found to encapsulate metal atoms in this way.

Medical applications

One particular metallofullerene with gadolinium at its core is up to 40 times better as a contrast agent in magnetic resonance imaging scans for diagnostic imaging. Metallofullerenes may also provide ways to carry therapeutic radioactive ions to cancerous tissue.[1][2]

See also

References

  1. "Support for top-down theory of how ‘buckyballs’ form". KurzweilAI. Retrieved 2013-09-28.
  2. Zhang, J.; Bowles, F. L.; Bearden, D. W.; Ray, W. K.; Fuhrer, T.; Ye, Y.; Dixon, C.; Harich, K.; Helm, R. F.; Olmstead, M. M.; Balch, A. L.; Dorn, H. C. (2013). "A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism". Nature Chemistry 5 (10): 880–885. doi:10.1038/nchem.1748. PMID 24056346.


This article is issued from Wikipedia - version of the Wednesday, December 02, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.