Method of quantum characteristics
Quantum characteristics are phase-space trajectories that arise in the phase space formulation of quantum mechanics through the Wigner transform of Heisenberg operators of canonical coordinates and momenta. These trajectories obey the Hamilton equations in quantum form and play the role of characteristics in terms of which time-dependent Weyl's symbols of quantum operators can be expressed. In the classical limit, quantum characteristics reduce to classical trajectories. The knowledge of quantum characteristics is equivalent to the knowledge of quantum dynamics.
Weyl-Wigner association rule
In Hamiltonian dynamics, classical systems with  degrees of freedom are described by
 degrees of freedom are described by  canonical coordinates and momenta
 canonical coordinates and momenta 
that form a coordinate system in the phase space. These variables satisfy the Poisson bracket relations
The skew-symmetric matrix  ,
,
where  is the
 is the  identity matrix, defines nondegenerate 2-form in the phase space. 
The phase space acquires thereby the structure of a symplectic manifold. The phase space is not metric space, so distance between two points is not defined. The Poisson bracket of two functions can be interpreted as the oriented area of a parallelogram whose adjacent sides are gradients of these functions. 
Rotations in Euclidean space leave the distance between two points invariant. 
Canonical transformations in symplectic manifold leave the areas invariant.
 identity matrix, defines nondegenerate 2-form in the phase space. 
The phase space acquires thereby the structure of a symplectic manifold. The phase space is not metric space, so distance between two points is not defined. The Poisson bracket of two functions can be interpreted as the oriented area of a parallelogram whose adjacent sides are gradients of these functions. 
Rotations in Euclidean space leave the distance between two points invariant. 
Canonical transformations in symplectic manifold leave the areas invariant.
In quantum mechanics, the canonical variables  are associated to operators of canonical coordinates and momenta
 are associated to operators of canonical coordinates and momenta 
These operators act in Hilbert space and obey commutation relations
Weyl’s association rule[1]  extends the correspondence  to arbitrary phase-space functions and operators.
 to arbitrary phase-space functions and operators. 
Taylor expansion
A one-sided association rule  was formulated by Weyl initially with the help of Taylor expansion of functions of operators of the canonical variables
 was formulated by Weyl initially with the help of Taylor expansion of functions of operators of the canonical variables
The operators  do not commute, so the Taylor expansion is not defined uniquely. The above prescription uses the symmetrized products of the operators. The real functions correspond to the Hermitian operators. The function
 do not commute, so the Taylor expansion is not defined uniquely. The above prescription uses the symmetrized products of the operators. The real functions correspond to the Hermitian operators. The function  is called Weyl's symbol of operator
 is called Weyl's symbol of operator  .
. 
Under the reverse association  , the density matrix turns to the Wigner function.[2] Wigner functions have numerous applications in quantum many-body physics, kinetic theory, collision theory, quantum chemistry.
, the density matrix turns to the Wigner function.[2] Wigner functions have numerous applications in quantum many-body physics, kinetic theory, collision theory, quantum chemistry.
A refined version of the Weyl-Wigner association rule is proposed by Groenewold[3] and Stratonovich.[4]
Groenewold-Stratonovich basis
The set of operators acting in the Hilbert space is closed under multiplication of operators by  -numbers and summation. Such a set constitutes a vector space
-numbers and summation. Such a set constitutes a vector space  . The association rule formulated with the use of the Taylor expansion preserves operations on the operators. The correspondence can be illustrated with the following diagram:
. The association rule formulated with the use of the Taylor expansion preserves operations on the operators. The correspondence can be illustrated with the following diagram:
Here,  and
 and  are functions and
 are functions and  and
 and  are the associated operators.
 are the associated operators.
The elements of basis of  are labelled by canonical variables
 are labelled by canonical variables  . The commonly used Stratonovich basis looks like
. The commonly used Stratonovich basis looks like
The Weyl-Wigner two-sided association rule for function  and operator
 and operator  has the form
 has the form
The function  provides coordinates of the operator
 provides coordinates of the operator  in the basis
 in the basis  . The basis is complete and orthogonal:
. The basis is complete and orthogonal:
Alternative operator bases are discussed also.[5] The freedom in choice of the operator basis is better known as the operator ordering problem.
Star-product
The set of operators  is closed under the multiplication of operators. The vector space
 is closed under the multiplication of operators. The vector space  is endowed thereby with an associative algebra structure. Given two functions
 is endowed thereby with an associative algebra structure. Given two functions 
one can construct a third function
called  -product 
[3]
or Moyal product. It is given explicitly by
-product 
[3]
or Moyal product. It is given explicitly by
where
is the Poisson operator. The  -product splits into symmetric and skew-symmetric parts
-product splits into symmetric and skew-symmetric parts 
The  -product is not associative. In the classical limit
-product is not associative. In the classical limit  -product becomes the dot-product. The skew-symmetric part
-product becomes the dot-product. The skew-symmetric part  is known under the name of Moyal bracket. This is the Weyl's symbol of commutator. In the classical limit Moyal bracket becomes Poisson bracket. Moyal bracket is quantum deformation of Poisson bracket.
 is known under the name of Moyal bracket. This is the Weyl's symbol of commutator. In the classical limit Moyal bracket becomes Poisson bracket. Moyal bracket is quantum deformation of Poisson bracket.
Quantum characteristics
The correspondence  shows that coordinate transformations in the phase space are accompanied by transformations of operators of the canonical coordinates and momenta and vice versa. Let
 shows that coordinate transformations in the phase space are accompanied by transformations of operators of the canonical coordinates and momenta and vice versa. Let  be the evolution operator,
 be the evolution operator,
and  is Hamiltonian. Consider the following scheme:
 is Hamiltonian. Consider the following scheme:
Quantum evolution transforms vectors in the Hilbert space and, upon the Wigner association rule, coordinates in the phase space. In Heisenberg representation, the operators of the canonical variables are transformed as
The phase-space coordinates  that correspond to new operators
 that correspond to new operators  in the old basis
 in the old basis  are given by
 are given by
with the initial conditions
The functions  define quantum phase flow. In the general case, it is canonical to first order in
 define quantum phase flow. In the general case, it is canonical to first order in  .[6]
.[6]
Star-function
The set of operators of canonical variables is complete in the sense that any operator can be represented as a function of operators  . Transformations
. Transformations 
induce under the Wigner association rule transformations of phase-space functions:
Using the Taylor expansion, the transformation of function  under the evolution can be found to be
 under the evolution can be found to be
Composite function defined in such a way is called  -function. 
The composition law differs from the classical one. However, semiclassical expansion of
-function. 
The composition law differs from the classical one. However, semiclassical expansion of  around
 around  is formally well defined and involves even powers of
 is formally well defined and involves even powers of  only. 
This equation shows that, given quantum characteristics are constructed, physical observables can be found without further addressing to Hamiltonian. 
The functions
 only. 
This equation shows that, given quantum characteristics are constructed, physical observables can be found without further addressing to Hamiltonian. 
The functions  play the role of characteristics[7] similarly to classical characteristics used to solve classical Liouville equation.
 play the role of characteristics[7] similarly to classical characteristics used to solve classical Liouville equation. 
Quantum Liouville equation
The Wigner transform of the evolution equation for the density matrix in the Schrödinger representation leads to a quantum Liouville equation for the Wigner function. The Wigner transform of the evolution equation for operators in the Heisenberg representation,
leads to the same equation with the opposite (plus) sign in the right-hand side:
 -function solves this equation in terms of quantum characteristics:
-function solves this equation in terms of quantum characteristics:
Similarly, the evolution of the Wigner function in the Schrödinger representation is given by
The Liouville theorem of classical mechanics fails, to the extent that, locally, the "probability" density in phase space is not preserved in time.
Quantum Hamilton's equations
Quantum Hamilton's equations can be obtained applying the Wigner transform to the evolution equations for Heisenberg operators of canonical coordinates and momenta
The right-hand side is calculated like in the classical mechanics. The composite function is, however,  -function. The
-function. The  -product violates canonicity of the phase flow beyond the first order in
-product violates canonicity of the phase flow beyond the first order in  .
.
Conservation of Moyal bracket
The antisymmetrized products of even number of operators of canonical variables are c-numbers as a consequence of the commutation relations. These products are left invariant by unitary transformations and, in particular,
Phase-space transformations induced by the evolution operator preserve the Moyal bracket and do not preserve the Poisson bracket, so the evolution map
is not canonical.[7] Transformation properties of canonical variables and phase-space functions under unitary transformations in the Hilbert space have important distinctions from the case of canonical transformations in the phase space:
Composition law
Quantum characteristics can hardly be treated visually as trajectories along which physical particles move. The reason lies in the star-composition law
which is non-local and is distinct from the dot-composition law of classical mechanics.
Energy conservation
The energy conservation implies
 , ,
where
is Hamilton's function. In the usual geometric sense,  is not conserved along quantum characteristics.
 is not conserved along quantum characteristics.
Summary
The origin of the method of characteristics can be traced back to Heisenberg’s matrix mechanics. Suppose that we have solved in the matrix mechanics the evolution equations for the operators of the canonical coordinates and momenta in the Heisenberg representation. These operators evolve according to
It is known that for any operator  one can find a function f(ξ) through which
 one can find a function f(ξ) through which
 is represented in the form
 is represented in the form  . The same operator
. The same operator  at time τ is equal to
 at time τ is equal to
This equation shows that  are
characteristics that determine the evolution for all of the operators in Op(L2(Rn)). 
This property is fully transferred to the phase space upon deformation quantization and, in the limit of ħ → 0, to the classical mechanics.
 are
characteristics that determine the evolution for all of the operators in Op(L2(Rn)). 
This property is fully transferred to the phase space upon deformation quantization and, in the limit of ħ → 0, to the classical mechanics.
  - Liouville equation - Finite-order PDE - Infinite-order PDE    - Hamilton's equations - Finite-order ODE - Infinite-order PDE   - Initial conditions - Initial conditions   - Composition law  -composition law -composition law  - Conservation of Poisson bracket - Conservation of Moyal bracket   - Energy conservation - Energy conservation   - Solutions to Liouville equation   
 
 
 
 
 
 
 
 
 
Table compares properties of characteristics in classical and quantum mechanics. PDE and ODE are partial differential equations and ordinary differential equations, respectively. The quantum Liouville equation is the Weyl-Wigner transform of the von Neumann evolution equation for the density matrix in Schrödinger representation. The quantum Hamilton equations are the Weyl-Wigner transforms of the evolution equations for operators of the canonical coordinates and momenta in Heisenberg representation.
In classical systems, characteristics  satisfy usually first-order ODE, e.g., classical Hamilton's equations, and solve first-order PDE, e.g., classical Liouville equation. Functions
 satisfy usually first-order ODE, e.g., classical Hamilton's equations, and solve first-order PDE, e.g., classical Liouville equation. Functions  are characteristics also, despite both
 are characteristics also, despite both  and
 and  obey infinite-order PDE.
 obey infinite-order PDE. 
The quantum phase flow contains entire information on the quantum evolution. Semiclassical expansion of quantum characteristics and  -functions of quantum characteristics in power series in
-functions of quantum characteristics in power series in  allows calculation of the average values of time-dependent physical observables by solving a finite-order coupled system of ODE for phase space trajectories and Jacobi fields.[8][9] The order of the system of ODE depends on truncation of the power series. The tunneling effect is nonperturbative in
 allows calculation of the average values of time-dependent physical observables by solving a finite-order coupled system of ODE for phase space trajectories and Jacobi fields.[8][9] The order of the system of ODE depends on truncation of the power series. The tunneling effect is nonperturbative in  and is not captured by the expansion. 
The density of the quantum probability fluid is not preserved in phase-space, and there is no unambiguously defined notion of trajectories for quantum systems, as the quantum fluid "diffuses".[10]
Quantum characteristics must therefore be distinguished from both the trajectories of the de Broglie - Bohm theory 
[11] 
and the trajectories of the path-integral method in phase space for the amplitudes 
[12]
and the Wigner function.
[13][14] So far, only a few quantum systems have been explicitly solved using the method of quantum characteristics.
[15]
 and is not captured by the expansion. 
The density of the quantum probability fluid is not preserved in phase-space, and there is no unambiguously defined notion of trajectories for quantum systems, as the quantum fluid "diffuses".[10]
Quantum characteristics must therefore be distinguished from both the trajectories of the de Broglie - Bohm theory 
[11] 
and the trajectories of the path-integral method in phase space for the amplitudes 
[12]
and the Wigner function.
[13][14] So far, only a few quantum systems have been explicitly solved using the method of quantum characteristics.
[15]
See also
- Method of characteristics
- Wigner–Weyl transform
- Deformation theory
- Wigner distribution function
- Modified Wigner distribution function
- Wigner quasiprobability distribution
- Negative probability
References
- ↑ H. Weyl, Z. Phys. 46, 1 (1927).
- ↑ E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749 (1932).
- 1 2 H. J. Groenewold, On the Principles of elementary quantum mechanics, Physica, 12, 405 (1946).
- ↑ R. L. Stratonovich, Sov. Phys. JETP 4, 891 (1957).
- ↑ C. L. Mehta, J. Math. Phys. 5, 677 (1964).
- ↑ P. A. M. Dirac, The Principles of Quantum Mechanics, First Edition (Oxford: Clarendon Press, 1930).
- 1 2 M. I. Krivoruchenko, A. Faessler, Weyl's symbols of Heisenberg operators of canonical coordinates and momenta as quantum characteristics, J. Math. Phys. 48, 052107 (2007).
- ↑ M. I. Krivoruchenko, C. Fuchs, A. Faessler, Semiclassical expansion of quantum characteristics for many-body potential scattering problem, Annalen der Physik 16, 587 (2007).
- ↑ S. Maximov, On a special picture of dynamical evolution of nonlinear quantum systems in the phase-space representation, Physica D238, 1937 (2009).
- ↑ J. E. Moyal, Quantum mechanics as a statistical theory, Proceedings of the Cambridge Philosophical Society, 45, 99 (1949).
- ↑ P. R. Holland, The quantum theory of motion, (Cambridge University Press, 1993).
- ↑ F. A. Berezin, Feynman path integrals in a phase space, Sov. Phys. Usp. 23, 763 (1980).
- ↑ M. S. Marinov, A new type of phase-space path integral, Phys. Lett. A 153, 5 (1991).
- ↑ Wong, C. Y. (2003). "Explicit solution of the time evolution of the Wigner function". Journal of Optics B: Quantum and Semiclassical Optics 5 (3): S420. doi:10.1088/1464-4266/5/3/381.
- ↑ G. Braunss, Quantum dynamics in phase space: Moyal trajectories 2, J. Math. Phys. 54, 012105 (2013). doi:10.1063/1.4773229
Textbooks
- H. Weyl, The Theory of Groups and Quantum Mechanics, (Dover Publications, New York Inc., 1931).
- V. I. Arnold, Mathematical Methods of Classical Mechanics, (2-nd ed. Springer-Verlag, New York Inc., 1989).
- M. V. Karasev and V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization. Translations of Mathematical Monographs, 119. (American Mathematical Society, Providence, RI, 1993).
- Some Applications of Quantum Mechanics, Ed. M. R. Pahlavani, (InTech, Zagreb, 2012).
 
  
 
 
 ![[\hat{\xi}^{k},\hat{\xi}^{l}]=-i\hbar I^{kl}.](../I/m/44e8f5be01dfa934bec916056a68855d.png)
 
 

![f(\xi )=\operatorname{Tr}[\hat{B}(\xi )\hat{f}],](../I/m/21ed08f9baf1723e4a8c0dcc313f8ec5.png)

![\int \frac{d^{2n}\xi }{(2\pi \hbar )^{n}}\hat{B}(\xi )\operatorname{Tr}[\hat{B}(\xi )\hat{f}] =\hat{f},](../I/m/135ddfe7ed03c9b76674aa5d7bda3d64.png)
![\operatorname{Tr}[\hat{B}(\xi )\hat{B}(\xi ^{\prime })] = (2\pi \hbar )^{n}\delta^{2n}(\xi -\xi ^{\prime }).](../I/m/b861c535cbdf6ba993cbc517d854ee8b.png)
![f(\xi ) = Tr[\hat{B}(\xi )\hat{f}]~~\mathrm{and}~~g(\xi ) = Tr[\hat{B}(\xi )\hat{g}],](../I/m/319e4f7fa99fa0397993bfb00b7736dc.png)
![f(\xi )\star g(\xi )=Tr[\hat{B}(\xi )\hat{f}\hat{g}]](../I/m/0881d530cefcc090e403ca24c2484fc2.png)

 
 





![\xi^{i} \rightarrow \acute{\xi}^{i} = q^{i}(\xi,\tau) = Tr[\hat{B}(\xi ) \hat{U}^{+} \hat{\xi}^{i}  \hat{U}],](../I/m/a604c0503d829c6e8ce52ce2991ba2bd.png)


![f(\xi) \stackrel{q}\longrightarrow \acute{f}(\xi) = Tr[\hat{B}(\xi )\hat{U}^{+}\hat{f}\hat{U}]](../I/m/40b756f054a0109297d768f4cac790bd.png)


![f(\xi ) \rightarrow \acute{f}(\xi ) \equiv Tr[\hat{B}(\xi )\hat{U^{+}}f(\hat{\xi})\hat{U}] =\sum_{s=0}^{\infty }\frac{1}{s!}\frac{\partial ^{s}f(0)}{\partial \xi
^{i_{1}}...\partial \xi ^{i_{s}}}q^{i_{1}}(\xi,\tau )\star ...\star q^{i_{s}}(\xi,\tau) \equiv f(\star q(\xi ,\tau)).](../I/m/64d33375edbb4554783d67603de9e294.png)
![\frac{\partial }{\partial \tau} \hat{f} = -\frac{i}{\hbar}[\hat{f},\hat{H}],](../I/m/873b3e304f87da38d5a3fa7285248193.png)





 
 
![H(\xi )=Tr[\hat{B}(\xi )\hat{H}]](../I/m/8eb250636a80ef8af60c42d369bfafd4.png)
 
 