Metric dimension (graph theory)
In graph theory, the metric dimension of a graph G is the minimum cardinality of a subset S of vertices such that all other vertices are uniquely determined by their distances to the vertices in S. Finding the metric dimension of a graph is an NP-hard problem; the decision version, determining whether the metric dimension is less than a given value, is NP-complete.
Detailed definition
For an ordered subset of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the ordered k-tuple , where d(x,y) represents the distance between the vertices x and y. The set W is a resolving set (or locating set) for G if every two vertices of G have distinct representations. The metric dimension of G is the minimum cardinality of a resolving set for G. A resolving set containing a minimum number of vertices is called a basis (or reference set) for G. Resolving sets were introduced independently by Slater (1975) and Harary & Melter (1976).
Trees
Slater (1975) provides the following simple characterization of the metric dimension of a tree. If the tree is a path, its metric dimension is one. Otherwise, let L denote the set of degree-one vertices in the tree (usually called leaves, although Slater uses that word differently). Let K be the set of vertices that have degree greater than two, and that are connected by paths of degree-two vertices to one or more leaves. Then the metric dimension is |L| − |K|. A basis of this cardinality may be formed by removing from L one of the leaves associated with each vertex in K.
Properties
In Chartrand et al. (2000), it is proved that:
- The metric dimension of a graph G is 1 if and only if G is a path.
- The metric dimension of an n-vertex graph is n − 1 if and only if it is a complete graph.
- The metric dimension of an n-vertex graph is n − 2 if and only if the graph is a complete bipartite graph Ks, t, a split graph , or .
Khuller, Raghavachari & Rosenfeld (1996) prove the inequality for any n-vertex graph with diameter D and metric dimension β. This bounds follows from the fact that each vertex that is not in the resolving set is uniquely determined by a distance vector of length β with each entry being an integer between 1 and D (there are precisely such vectors). However, the bound is only achieved for or ; the more precise bound is proved by Hernando et al. (2010).
Computational complexity
For any constant k, the graphs of metric dimension at most k can be recognized in polynomial time, by testing all possible k-tuples of vertices, but this algorithm is not fixed-parameter tractable. Answering a question posed by Lokshtanov (2010), Hartung & Nichterlein (2013) show that metric dimension is complete for the parameterized complexity class W[2], implying that a time bound of the form nO(k) as achieved by this naive algorithm is likely optimal and that a fixed-parameter tractable algorithm (parameterized by the metric dimension) is unlikely to exist.
The metric dimension of an arbitrary n-vertex graph may be approximated in polynomial time to within an approximation ratio of by expressing it as a set cover problem, a problem of covering all of a given collection of elements by as few sets as possible in a given family of sets (Khuller, Raghavachari & Rosenfeld 1996). In the set cover problem formed from a metric dimension problem, the elements to be covered are the pairs of vertices to be distinguished, and the sets that can cover them are the sets of pairs that can be distinguished by a single chosen vertex. The approximation bound then follows by applying standard approximation algorithms for set cover. An alternative greedy algorithm that chooses vertices according to the difference in entropy between the equivalence classes of distance vectors before and after the choice achieves an even better approximation ratio, (Hauptmann, Schmied & Viehmann 2012). This approximation ratio is close to best possible, as under standard complexity-theoretic assumptions a ratio of cannot be achieved in polynomial time for any (Hauptmann, Schmied & Viehmann 2012). The latter hardness of approximation still holds for instances restricted to subcubic graphs (Hartung & Nichterlein 2013) (and even to bipartite subcubic graphs as shown in Hartung's PhD thesis (Hartung 2014)).
Metric dimension is NP-complete (Garey & Johnson 1979) and remains so for bounded-degree planar graphs (Díaz et al. 2012). It is also NP-complete for split graphs, bipartite graphs and their complements, line graphs of bipartite graphs (Epstein, Levin & Woeginger 2012) and unit disk graphs (Hoffmann & Wanke 2012). It may be solved in polynomial time on outerplanar graphs (Díaz et al. 2012), on cographs (Epstein, Levin & Woeginger 2012) and on chain graphs (Fernau et al. 2015). It may also be solved in polynomial time for graphs of bounded cyclomatic number, but this algorithm is again not fixed-parameter tractable (for the parameter "cyclomatic number") because the exponent in the polynomial depends on the cyclomatic number (Epstein, Levin & Woeginger 2012).
References
- Buczkowski, P.; Chartrand, G.; Poisson, C.; Zhang, P. (2003), "On k-dimensional graphs and their bases", Periodica Mathematica Hungarica 46 (1): 9–15, doi:10.1023/A:1025745406160, MR 1975342.
- Chartrand, G.; Eroh, L.; Johnson, M. A.; Oellermann, O. R. (2000), "Resolvability in graphs and the metric dimension of a graph", Discrete Applied Mathematics 105 (1–3): 99–113, doi:10.1016/S0166-218X(00)00198-0, MR 1780464.
- Díaz, J.; Pottonen, O.; Serna, M. J.; van Leeuwen, E. J. (2012), "On the complexity of metric dimension" (PDF), in Epstein, Leah; Ferragina, Paolo, Algorithms – ESA 2012: 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012, Proceedings, Lecture Notes in Computer Science 7501, Springer, pp. 419–430, arXiv:1107.2256, doi:10.1007/978-3-642-33090-2_37.
- Epstein, Leah; Levin, Asaf; Woeginger, Gerhard J. (2012), "The (weighted) metric dimension of graphs: hard and easy cases", in Golumbic, Martin Charles; Stern, Michal; Levy, Avivit; et al., Graph-Theoretic Concepts in Computer Science: 38th International Workshop, WG 2012, Jerusalem, Israel, June 26-28, 2012, Revised Selected Papers, Lecture Notes in Computer Science 7551, pp. 114–125, doi:10.1007/978-3-642-34611-8_14.
- Fernau, Henning; Heggernes, Pinar; van 't Hof, Pim; Meister, Daniel; Saei, Reza (2015), "Computing the metric dimension for chain graphs", Information Processing Letters 115 (9): 671–676, doi:10.1016/j.ipl.2015.04.006.
- Garey, M. R.; Johnson, D. S. (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, ISBN 0-7167-1045-5 A1.5: GT61, p. 204.
- Harary, F.; Melter, R. A. (1976), "On the metric dimension of a graph", Ars Combinatoria 2: 191–195, MR 0457289.
- Hartung, Sepp (2014), Exploring parameter spaces in coping with computational intractability, PhD thesis, Technische Universität Berlin, retrieved 2015-09-15.
- Hartung, Sepp; Nichterlein, André (2013), "On the parameterized and approximation hardness of metric dimension", 2013 IEEE Conference on Computational Complexity (CCC), Stanford, CA, USA, June 5-7, 2013, Proceedings, IEEE, pp. 266–276, doi:10.1109/CCC.2013.36.
- Hauptmann, Mathias; Schmied, Richard; Viehmann, Claus (2012), "Approximation complexity of metric dimension problem", Journal of Discrete Algorithms 14: 214–222, doi:10.1016/j.jda.2011.12.010, MR 2922072.
- Hernando, Carmen; Mora, Mercè; Pelayo, Ignacio M.; Seara, Carlos; Wood, David R. (2010), "Extremal graph theory for metric dimension and diameter", The Electronic Journal of Combinatorics 17: #R30.
- Hoffmann, Stefan; Wanke, Egon (2012), "Metric Dimension for Gabriel Unit Disk Graphs Is NP-Complete", in Bar-Noy, Amotz; Halldórsson, Magnús M., Algorithms for Sensor Systems: 8th International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities, ALGOSENSORS 2012, Ljubljana, Slovenia, September 13-14, 2012, Revised Selected Papers, Lecture Notes in Computer Science 7718, Springer, pp. 90–92, doi:10.1007/978-3-642-36092-3_10.
- Khuller, S.; Raghavachari, B.; Rosenfeld, A. (1996), "Landmarks in graphs", Discrete Applied Mathematics 70 (3): 217–229, doi:10.1016/0166-218X(95)00106.
- Lokshtanov, Daniel (2010), "Open problems – Parameterized complexity and approximation algorithms: Metric Dimension", in Demaine, Erik D.; Hajiaghayi, MohammadTaghi; Marx, Dániel, Parameterized Complexity and Approximation Algorithms, Dagstuhl Seminar Proceedings, Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
- Slater, P. J. (1975), "Leaves of trees", Proc. 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), Congressus Numerantium 14, Winnipeg: Utilitas Math., pp. 549–559, MR 0422062.
- Slater, P. J. (1988), "Dominating and reference sets in a graph", Journal of Mathematical and Physical Sciences 22 (4): 445–455, MR 0966610.