Meyer wavelet

The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. It is infinitely differentiable with infinite support and defined in frequency domain in terms of function  \nu as:

 \Psi ( \omega) := \begin{cases}
\frac {1}{\sqrt{2\pi}} \sin\left(\frac {\pi}{2} \nu \left(\frac{3|\omega|}{2\pi} -1\right)\right) e^{j\omega/2} & \text{if } 2 \pi /3<|\omega|< 4 \pi /3, \\
\frac {1}{\sqrt{2\pi}} \cos\left(\frac {\pi}{2} \nu \left(\frac{3| \omega|}{4 \pi}-1\right)\right) e^{j \omega/2} & \text{if } 4 \pi /3<| \omega|< 8 \pi /3, \\
0 & \text{otherwise}, \end{cases}

where:

 \nu (x) := \begin{cases}
0 & \text{if } x < 0, \\
x & \text{if } 0< x < 1, \\
1 & \text{if } x > 1. \end{cases}

There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet. For instance, another standard implementation adopts

 \nu (x) := \begin{cases}
{x^4}(35-84x+70{x^2}-20{x^3}) & \text{if } 0< x < 1, \\
0 & \text{otherwise}. \end{cases}
Spectrum of the Meyer wavelet.

The Meyer scale function is given by:

 \Phi ( \omega) := \begin{cases}
\frac {1}{\sqrt{2\pi}} & \text{if } | \omega|< 2 \pi /3, \\
\frac {1}{\sqrt{2\pi}} \cos\left(\frac {\pi}{2} \nu \left(\frac{3|\omega|} {2\pi}-1\right) \right)  & \text{if } 2\pi/3<|\omega|< 4\pi/3, \\
0 & \text{otherwise}. \end{cases}
Meyer scale function.

In the time-domain, the waveform of the Meyer mother-wavelet has the shape as shown in the following figure:

Meyer wavelet.

References

External links

Look up wavelet in Wiktionary, the free dictionary.
Wikimedia Commons has media related to Wavelet.
This article is issued from Wikipedia - version of the Tuesday, December 08, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.