Minimal subtraction scheme

In quantum field theory, the minimal subtraction scheme, or MS scheme, is a particular renormalization scheme used to absorb the infinities that arise in perturbative calculations beyond leading order, introduced independently by 't Hooft (1973) and Weinberg (1973). The MS scheme consists of absorbing only the divergent part of the radiative corrections into the counterterms.

In the similar and more widely used modified minimal subtraction, or MS-bar scheme (\overline{\text{MS}}), one absorbs the divergent part plus a universal constant (which always arises along with the divergence in Feynman diagram calculations) into the counterterms. When using dimensional regularization, i.e.  d^4 p \to \mu^{4-d}  d^d p, it is implemented by rescaling the renormalization scale: \mu^2 \to \mu^2 \frac{ e^{\gamma_E} }{4 \pi}, with \gamma_E the Euler–Mascheroni constant.

References


This article is issued from Wikipedia - version of the Tuesday, March 15, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.