Modified Uniformly Redundant Array

This article is about coded aperture masks. For other uses, see Mura.

A modified uniformly redundant array (MURA) is a type of mask used in coded aperture imaging.

Mathematical Construction of MURAs

MURAs can be generated in any length L that is prime and of the form

 L =  4m +1, \ \  m = 1,2,3,...,

the first six such values being L = 5,13,17,29,37. The binary sequence of a linear MURA is given by  A = {A_i}_{i=0}^{L-1}, where

 
A_i = \begin{cases}
  0  & \mbox{if } i = 0, \\
  1  & \mbox{if } i \mbox{ is a quadratic residue modulo } L, i \neq 0,\\
 0   & \mbox{otherwise}
\end{cases}

These linear MURA arrays can also be arranged to form hexagonal MURA arrays. One may note that if  L = 4m  + 3 and A_0 = 1 , a uniformly redundant array(URA) is a generated.

As with any mask in coded aperture imaging, an inverse sequence must also be constructed. In the MURA case, this inverse G can be constructed easily given the original coding pattern A:

 
G_i = \begin{cases}
  +1   & \mbox{if } i = 0, \\
  +1  & \mbox{if } A_i = 1, i \neq 0,\\
 -1  & \mbox{if } A_i = 0, i \neq 0, 
\end{cases}

Rectangular MURA arrays are constructed in a slightly different manner, letting  A = \{A_{ij}\}_ {i,j  =0}^{p-1}  , where

 
A_{ij} = \begin{cases} 
0 & \mbox{if } i = 0, \\
1 & \mbox{if } j = 0, i \neq 0, \\
1 & \mbox{if } C_i C_j = +1, \\
0  & \mbox{otherwise,} 
\end{cases}

and

 
C_i  = \begin{cases} 
+1 & \mbox{if } i \mbox{ is a quadratic residue modulo }p, \\
- 1 & \mbox{otherwise,}
\end{cases}
A rectangular MURA mask of size 101

The corresponding decoding function G is constructed as follows:

 
G_{ij} = \begin{cases} 
+1 & \mbox{if } i + j = 0; \\
+1 & \mbox{if } A_{ij} = 1,  \ (i+j \neq 0); \\
-1 & \mbox{if } A_{ij} = 0, \ (i+j \neq 0),;
\end{cases}
This article is issued from Wikipedia - version of the Wednesday, March 23, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.