Molded interconnect device

A molded interconnect device (MID) is an injection-molded thermoplastic part with integrated electronic circuit traces. The use of high temperature thermoplastics and their structured metallization opens a new dimension of circuit carrier design to the electronics industry.[1] This technology combines plastic substrate/housing with circuitry into a single part through selective metallization.

Applications

Key markets for the MID technology are consumer electronic, telecommunication, automotive and medical. A very common application for MIDs are integrated antennas in cellphones[2] and other mobile devices including laptops and netbooks.[3]

Manufacturing methods

Molded interconnect devices are typically manufactured in these technologies:

Laser Direct Structuring (LDS)

The LDS process uses a thermoplastic material, doped with a metal-plastic additive activated by means of laser. The basic component is single-component injection molded, with practically no restrictions in terms of 3D design freedom. A laser then writes the course of the later circuit trace on the plastic. Where the laser beam hits the plastic the metal additive forms a micro-rough track. The metal particles of this track form the nuclei for the subsequent metallization.[4] In an electroless copper bath, the conductor path layers arise precisely on these tracks. Successively layers of copper, nickel and gold finish can be raised in this way.

The LDS process is characterized by:

The LDS process is patented by LPKF Laser & Electronics AG

Two-shot molding

Two-shot molding[5] is an injection molding process using two different resins and only one of the two resins is platable. Typically the platable substrate is ABS and the non-platable substrate is polycarbonate. In a two shot component, these are then submitted to an electroless plating process where the butadiene is used to chemically roughen the surface and allow adhesion of a copper primary layer.[6] The plating chemistry can be controlled to prevent the roughening of the polycarbonate portions of the component. While not commonly found outside of cellphone antenna production, this technology is public and widely available.

Design Software Solutions

Placement of components onto the 3D body can be done in any mCAD software. There is a special design software available (Mecadtron Nextra) which can read in mCAD data as well as electrical CAD data including the net list (interconnects). This tool offers interactive routing on the 3D surface as well as an online design rule check. Data can be exported in a LPKF production file.

External links

References

This article is issued from Wikipedia - version of the Wednesday, March 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.