Monofluorophosphate

Monofluorophosphate
Names
IUPAC name
Fluoro-dioxido-oxo-λ5-phosphane
Other names
Fluorophosphate, Phosphorofluoridat, Phosphorofluoridate
Identifiers
ChemSpider 58737
Jmol interactive 3D Image
PubChem 65241
Properties
PO3F2–
Molar mass 97.971 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Monofluorophosphate is an anion with the formula PO3F2−, which is a phosphate group with one oxygen atom substituted with a fluoride atom. The charge of the ion is −2. The ion resembles sulfate in size, shape and charge, and can thus form compounds with the same structure as sulfates. These include Tutton's salts and langbeinites. The most well-known compound of monofluorophosphate is sodium monofluorophosphate, commonly used in toothpaste.

Related ions include difluorophosphate (PO
2
F
2
) and hexafluorophosphate (PF
6
).[1] The related neutral molecule is phosphenic fluoride PO2F.

Organic derivatives can be highly toxic and include diisopropyl fluorophosphate.

Willy Lange from Berlin discovered sodium monofluorophosphate in 1929. He fruitlessly tried to make monofluorophosphoric acid. However, he did discover the highly toxic organic esters. Following this discovery various nerve gases like sarin were developed.

Fluorophosphate glasses are low melting point kinds of glass which are mixtures of fluoride and phosphate metal compounds. For example the composition 10% SnO, 40% SnF2, 50% P2O5 forms a glass melting about 139 °C. PbO and PbF2 can lower the melting temperature, and increase water resistance.[2] These glasses can also be coloured by various other elements, and organic dyes.

Production

Hydrolysis of difluorophosphate with an alkali produces monofluorophosphate.

PO
2
F
2
+ 2 MOH → M2PO3F + H2O + F

Industrial production is by reaction of a fluoride with a metaphosphate.

MF + MPO3 → M2PO3F

Disodium hydrogen phosphate or tetrasodium pyrophosphate can react with hydrogen fluoride to form the sodium salt.

Na2HPO4 or Na4P2O7

Phosphoric acid reacts with metal fluorides dissolved in molten urea to yield monofluorphosphates.[3]

Properties

Monofluorophosphates are stable to heat at room temperature, but will decompose when heated. For example, at 450 K silver monofluorophosphate gives off phosphoryl fluoride (POF3) as a gas leaving behind silver phosphate (Ag3PO4) and silver pyrophosphate (Ag4P2O7).[4]

Compounds

name Formula crystal form Formula weight density ChemSpider PubChem CAS
fluorophosphoric acid H2PO3F 99.986 99.99 13537-32-1
sodium monofluorophosphate Na2PO3F 22686 24266 10163-15-2
sodium hydrogen monofluorophosphate NaHPO3F 121.968 19860808 20859-36-3
potassium monofluorophosphate[5] K2PO3F orthorhombic a=7.554 Å, b=5.954 Å, c=10.171 Å, V=457Å3 Z=4 (at 20 °C) Z=4[6] 176.17 2.57 20859-37-4 14306-73-1
K2PO3F.KF[7]
rubidium monofluorophosphate[8] Rb2PO3F orthorhombic[9] a=7.8714 Å, b=6.1236 Å, c=10.5424 Å, V=508.15Å3 Z=4 (at 290K) Z=4 268.9 3.514
caesium monofluorophosphate Cs2PO3F[8] orthorhombic a=8.308 Å, b=6.3812 Å, c=11.036 Å, V=585.1Å3 Z=4 at 240K 363.8 4.129
ammonium monofluorophosphate[5] (NH4)2PO3F orthorhombic a=6.29 Å, b=8.31 Å, c=12.70 Å, V=Å3 ß=99.6°, 4 per unit cell (Z)[10] 134.05 1.633 8324505
ammonium monofluorophosphate hydrate[11] (NH4)2PO3F.H2O monoclinic a=7.9481 Å, b=11.3472 Å, c=6.0425 Å, V=Å3 ß=117.55°, 4 per unit cell 152.05 1.536
magnesium monofluorophosphate MgPO3F 122.28 23206079
calcium monofluorophosphate dihydrate[12] CaPO3F.2H2O monoclinic 8096036 9920401 37809-19-1
calcium monofluorophosphate hemihydrate[12] CaPO3F.1/2H2O
strontium monofluorophosphate SrPO3F monoclinic[13] 185.59 18183579
strontium monofluorphosphate hydrate[14] SrPO3F·H2O 185.59
barium monofluorophosphate BaPO3F monoclinic a = 11.3105 Å, b = 8.6934 Å, c = 9.2231 Å, β = 127.819° Z=4
orthorhombic[15]
235.299 20836124 15600-53-0[16]
copper monofluorophosphate[17] CuPO3F.5H2O 251.59
manganese(II) fluorophosphate dihydrate MnPO3F.2H2O triclinic Z = 2, a = 5.528, b = 5.636, c = 8.257 Å, α = 81.279, β = 75.156, γ = 71.722°[18] 188.94
basic copper potassium monofluorophosphate[17] Cu2K(OH)(PO3F)2.5H2O monoclinic a=9.094Å, b=6.333Å, c=7.75Å, ß=117.55°, 2 per unit cell.
diammonium diaquabis(monofluorophoasphato) copper[19] Cu(NH4)2(PO3F)2.2H2O
vanadium monofluorophosphate VPO3F 148.91 20452625
silver monofluorophosphate[17] Ag2PO3F monoclinic a=9.245 Å, b=5.585 Å, c=14.784 Å, and β=90.178° Z=8[4] 313.7 44135907
zinc monofluorophosphate[20] ZnPO3F.2.5H2O 163.35 20846323 68705-59-9
tin monofluorophosphate SnPO3F.2.5H2O monoclinic 216.68 44717639 52262-58-5
lead monofluorophosphate PbPO3F orthorhombic a=6.95 b=8.52 c=5.47[21] 6.24
sodium hydrogen monofluorophosphate[22] NaHPO3F.2.H2O monoclinic a=19.112Å, b=5.341Å, c=12.72Å, α=110.18°, V=1219.4. 167.01 1.819
Ammonium dipotassium hydrogen difluorophosphate[23] NH4K2H(PO3F)2
ditheylammonium hydrogen monofluorophosphate[22] [NH2(CH2CH3)2]HPO3F orthorhombic a=12.892Å, b=9.530Å, c=13.555Å, α=90°, V=1665. 173.12 1.381
tetramethylammonium monofluorophosphate[22] [N(CH3)4]2PO3F 246.26
tetraethylammonium monofluorophosphate[22] [N(CH2CH3)4]2PO3F 358.47
tetrabutylammonium monofluorophosphate[22] [N(CH2CH2CH2CH3)4]2PO3F 582.90
piperazinium hydrogen monofluorophosphate[22] [PipzH2]HPO3F monoclinic a=6.020Å, b=13.012Å, c=7.285Å, α=95.09°, V=568.4 286.11 1.672
glutamine monofluorophosphate monohydrate C5H12FN2O6P 246.131 19989732
glutamine monofluorophosphate disodium dichloride C10H20Cl2FN4Na2O9P 507.146 143826 164002
Tris(2-carbamoylguanidinium) hydrogen fluorophosphonate fluorophosphonate monohydrate[24] 3C2H7N4O+·HFPO3·FPO32−·H2O triclinic a=6.7523,b = 8.2926,c = 9.7297, α= 100.630°,β=90.885°,γ=99.168, V = 528.05
bis(2-carbamoylguanidinium) fluorophosphonate dihydrate[25] 2C2H7N4O+·FPO32−·2H2O

Uses

Zinc monofluorophosphate can be used as a corrosion inhibitor for steel when salt is present.[26]

Glutamine monofluorophosphate has been used as a fluoride-bearing medicine.

References

  1. Cotton, F. Albert; Wilkinson, Geoffrey (1966). Advanced Inorganic Chemistry: A Comprehensive Text. John Wiley & Sons. p. 516.
  2. Shaw, Cathy M.; James E. Shelby (1988). "Effect of Lead Compounds on the Properties of Stannous Fluorophosphate Glasses". Journal of the American Ceramic Society 71 (5): C–252–C–253. doi:10.1111/j.1151-2916.1988.tb05071.x. ISSN 0002-7820.
  3. Schülke, U.; R. Kayser (1991). "Herstellung von Fluorophosphaten, Difluorophosphaten, Fluorophsophonaten und Fluorophosphiten in fluoridhaltigen Harnstoffschmelzen". Zeitschrift für anorganische und allgemeine Chemie (in German) 600 (1): 221–226. doi:10.1002/zaac.19916000130. ISSN 0044-2313.
  4. 1 2 Weil, Matthias; Michael Puchberger, Ekkehard Füglein, Enrique J. Baran, Julia Vannahme, Hans J. Jakobsen, Jørgen Skibsted (2007). "Single-Crystal Growth and Characterization of Disilver(I) Monofluorophosphate(V), Ag2PO3F: Crystal Structure, Thermal Behavior, Vibrational Spectroscopy, and Solid-State 19F, 31P, and 109Ag MAS NMR Spectroscopy". Inorganic Chemistry 46 (3): 801–808. doi:10.1021/ic061765w. ISSN 0020-1669. PMID 17257023.
  5. 1 2 Bhattacharjee, Manish; Mihir K. Chaudhuri (1987). "Direct synthesis of ammonium monofluorophosphate monohydrate, [NH4]2[PO3F].H2O and potassium monofluorophosphate, K2[PO3F]". Journal of the Chemical Society, Dalton Transactions (2): 477. doi:10.1039/DT9870000477. ISSN 0300-9246.
  6. Payen, Jean-Luc; Jean Durand, Louis Cot, Jean-Louis Galigne (1979). "Etude structurale du monofluorophosphate de potassium K2PO3F". Canadian Journal of Chemistry 57 (8): 886–889. doi:10.1139/v79-146. ISSN 0008-4042.
  7. Grimmer, Arnd-Rüdiger; Dirk Müller, Jochen Neels; Neels, Jochen (1985). "Solid-state high-resolution NMR K2PO3F·KF". Journal of Fluorine Chemistry 29 (1–2): 60. doi:10.1016/S0022-1139(00)83295-9. ISSN 0022-1139.
  8. 1 2 Fábry, Jan; Michal Dušek, Karla Fejfarová, Radmila Krupková, Přemysl Vaněk, Ivana Císařová (2006). "Dirubidium fluorotrioxophosphate, Rb2PO3F, at 290 and 130 K, and dicaesium fluorotrioxophosphate, Cs2PO3F, at 240 and 100 K". Acta Crystallographica Section C Crystal Structure Communications 62 (6): i49–i52. doi:10.1107/s0108270106016350. ISSN 0108-2701.
  9. "List of Substances". AtomWork. Retrieved 4 November 2014.
  10. Krupková, Radmila; Jan Fábry, Ivana Císařová, Přemysl Vaněk (2002). "Bis(ammonium) fluorophosphate at room temperature". Acta Crystallographica Section C Crystal Structure Communications 58 (5): i66–i68. doi:10.1107/S010827010200553X. ISSN 0108-2701.
  11. Berndt, A. F.; J. M. Sylvester (1972). "The crystal structure of ammonium monofluorophosphate: (NH4)2PO3F.H2O". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 28 (7): 2191–2193. doi:10.1107/S0567740872005771. ISSN 0567-7408.
  12. 1 2 Rowley, H. H.; John E. Stuckey (1956). "Preparation and Properties of Calcium Monofluorophosphate Dihydrate". Journal of the American Chemical Society 78 (17): 4262–4263. doi:10.1021/ja01598a022. ISSN 0002-7863.
  13. Rafiq, M.; Durand J.; Cot L (1979). "étude cristallographique des phosphites des métaux alcalinoterreux". Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Ser C 288 (15): 411–413.
  14. Menz, D.-H.; L. Kolditz, K. Heide, Ch. Kunert, Ch. Mensing (1986). "Zur Thermischen Zersetzung von SrPO3F·H2O". Zeitschrift für anorganische und allgemeine Chemie 540 (9–10): 191–197. doi:10.1002/zaac.19865400920. ISSN 0044-2313.
  15. Stöger, Berthold; Matthias Weil, Jørgen Skibsted; Skibsted, Jørgen (2013). "The crystal structure of BaPO3F revisited – a combined X-ray diffraction and solid-state 19F, 31P MAS NMR study". Dalton Transactions 42 (32): 11672. doi:10.1039/C3DT50373A. ISSN 1477-9226.
  16. "15600-53-0 - QNHNZAMKMLIQRR-UHFFFAOYSA-L - Barium fluorophosphate". ChemIDplus. Retrieved 4 November 2014.
  17. 1 2 3 Möwius, Frank; Burkhard Ziemer, Manfred Meisel, Herbert Grunze; Meisel, Manfred; Grunze, Herbert (1985). "On a new type of copper monofluorophosphate". Journal of Fluorine Chemistry 29 (1–2): 68. doi:10.1016/S0022-1139(00)83303-5. ISSN 0022-1139.
  18. Weil, Matthias; Baran, Enrique J.; Kremer, Reinhard K.; Libowitzky, Eugen (February 2015). "Synthesis, Crystal Structure, and Properties of Mn(PO3F)(H 2O)2". Zeitschrift für anorganische und allgemeine Chemie 641 (2): 184–191. doi:10.1002/zaac.201400587.
  19. Berraho, M.; A. Vegas, M. Martínez-Ripoll, M. Rafiq (1994). "A copper monofluorophosphate, Cu(H2O)2(NH4)2(PO3F)2". Acta Crystallographica Section C Crystal Structure Communications 50 (5): 666–668. doi:10.1107/S0108270193010789. ISSN 0108-2701.
  20. Möwius, F.; M. Meisel, H. Kirk, W. Unger, D. Seepe, W. Metzner (1990). "Fluorophosphate—eine neue Wirkstoffgruppe für Holzschutzmittel". Holz als Roh- und Werkstoff (in German) 48 (9): 345–350. doi:10.1007/BF02639896. ISSN 0018-3768.
  21. Walford, L. K. (1967). "Single-crystal and powder data for lead fluorophosphate". Acta Crystallographica 22 (2): 324–324. doi:10.1107/S0365110X67000593. ISSN 0365-110X.
  22. 1 2 3 4 5 6 Prescott, Hillary Anne (2002-08-01). "The crystal structures and thermal behavior of hydrogen monofluorophosphates and basic monofluorophosphates with alkali metal and N-containing cations". p. 32. Retrieved 1 November 2014.
  23. Fábry, Jan; Krupková, Radmila; Císařová, Ivana (24 January 2003). "Ammonium dipotassium hydrogen difluorophosphate at room temperature". Acta Crystallographica Section E Structure Reports Online 59 (2): i14–i16. doi:10.1107/S160053680300117X.
  24. Fábry, Jan; Michaela Fridrichová, Michal Dušek, Karla Fejfarová, Radmila Krupková (2011). "Tris(2-carbamoylguanidinium) hydrogen fluorophosphonate fluorophosphonate monohydrate". Acta Crystallographica Section E Structure Reports Online 68 (1): o47–o48. doi:10.1107/S1600536811051683. ISSN 1600-5368.
  25. Fábry, Jan; Michaela Fridrichová, Michal Dušek, Karla Fejfarová, Radmila Krupková (2012). "Two polymorphs of bis(2-carbamoylguanidinium) fluorophosphonate dihydrate". Acta Crystallographica Section C Crystal Structure Communications 68 (2): o71–o75. doi:10.1107/S0108270111053133. ISSN 0108-2701.
  26. Duprat, M.; A. Bonnel, F. Dabosi, J. Durand, L. Cot (1983). "Les monofluorophosphates de zinc et de potassium en tant qu'inhibiteurs de la corrosion d'un acier au carbone en solution de NaCl à 3%". Journal of Applied Electrochemistry 13 (3): 317–323. doi:10.1007/BF00941603. ISSN 0021-891X.

Other reading

This article is issued from Wikipedia - version of the Wednesday, March 30, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.