Monte Carlo tree search

In computer science, Monte Carlo tree search (MCTS) is a heuristic search algorithm for some kinds of decision processes, most notably those employed in game play. A leading example is recent computer Go programs,[1] but it also has been used in other board games, as well as real-time video games and non-deterministic games such as poker (see history section).

Principle of operation

The focus of Monte Carlo tree search is on the analysis of the most promising moves, expanding the search tree based on random sampling of the search space. The application of Monte Carlo tree search in games is based on many playouts. In each playout, the game is played-out to the very end by selecting moves at random. The final game result of each playout is then used to weight the nodes in the game tree so that better nodes are more likely to be chosen in future playouts.

The most basic way to use playouts is to apply the same number of playouts after each legal move of the current player, then choosing the move which led to the most victories.[2] The efficiency of this method—called Pure Monte Carlo Game Search—often increases with time as more playouts are assigned to the moves that have frequently resulted in the player's victory (in previous playouts). Full Monte Carlo tree search employs this principle recursively on many depths of the game tree. Each round of Monte Carlo tree search consists of four steps:[3]

Sample steps from one round are shown in the figure below. Each tree node stores the number of won/played playouts.

Note that the updating of the number of wins in each node during backpropagation should arise from the player who made the move that resulted in that node [4] (this is not accurately reflected in the sample image above). This ensures that during selection, each player's choices expand towards the most promising moves for that player, which mirrors the goal of each player to maximize the value of their move.

Rounds of search are repeated as long as the time allotted to a move remains. Then the move with the most simulations made is selected rather than the move with the highest average win rate.

Pure Monte Carlo game search

This basic procedure can be applied to any game whose positions necessarily have a finite number of moves and finite length. For each position, all feasible moves are determined: k random games are played out to the very end, and the scores are recorded. The move leading to the best score is chosen. Ties are broken by fair coin flips. Pure Monte Carlo Game Search results in strong play in several games with random elements, as in EinStein würfelt nicht!. It converges to optimal play (as k tends to infinity) in board filling games with random turn order, for instance in Hex with random turn order.

Exploration and exploitation

The main difficulty in selecting child nodes is maintaining some balance between the exploitation of deep variants after moves with high average win rate and the exploration of moves with few simulations. The first formula for balancing exploitation and exploration in games, called UCT (Upper Confidence Bound 1 applied to trees), was introduced by Levente Kocsis and Csaba Szepesvári.[5] UCT is based on the UCB1 formula derived by Auer, Cesa-Bianchi, and Fischer[6] and first applied to multi-stage decision making models (specifically, Markov Decision Processes) by Chang, Fu, Hu, and Marcus.[7] Kocsis and Szepesvári recommend to choose in each node of the game tree the move, for which the expression \frac{w_i}{n_i} + c\sqrt{\frac{\ln t}{n_i}} has the highest value. In this formula:

The first component of the formula above corresponds to exploitation; it is high for moves with high average win ratio. The second component corresponds to exploration; it is high for moves with few simulations.

Most contemporary implementations of Monte Carlo tree search are based on some variant of UCT.

Advantages and disadvantages

Although it has been proved that the evaluation of moves in Monte Carlo tree search converges to minimax,[8] the basic version of Monte Carlo tree search converges very slowly. However Monte Carlo tree search does offer significant advantages over alpha–beta pruning and similar algorithms that minimize the search space.

In particular, Monte Carlo tree search does not need an explicit evaluation function. Simply implementing the game's mechanics is sufficient to explore the search space (i.e. the generating of allowed moves in a given position and the game-end conditions). As such, Monte Carlo tree search can be employed in games without a developed theory or in general game playing.

The game tree in Monte Carlo tree search grows asymmetrically as the method concentrates on the more promising subtrees. Thus it achieves better results than classical algorithms in games with a high branching factor.

Moreover, Monte Carlo tree search can be interrupted at any time yielding the most promising move already found.

Improvements

Various modifications of the basic Monte Carlo tree search method have been proposed to shorten the search time. Some employ domain-specific expert knowledge, others do not.

Monte Carlo tree search can use either light or heavy playouts. Light playouts consist of random moves while heavy playouts apply various heuristics to influence the choice of moves.[9] These heuristics may employ the results of previous playouts (e.g. the Last Good Reply heuristic[10]) or expert knowledge of a given game. For instance, in many go-playing programs certain stone patterns in a portion of the board influence the probability of moving into that area.[11] Paradoxically, playing suboptimally in simulations sometimes makes a Monte Carlo tree search program play stronger overall.[12]

Domain-specific knowledge may be employed when building the game tree to help the exploitation of some variants. One such method assigns nonzero priors to the number of won and played simulations when creating each child node, leading to artificially raised or lowered average win rates that cause the node to be chosen more or less frequently, respectively, in the selection step.[13] A related method, called progressive bias, consists in adding to the UCB1 formula a \frac{b_i}{n_i} element, where bi is a heuristic score of the i-th move.[3]

The basic Monte Carlo tree search collects enough information to find the most promising moves only after many rounds; until then its moves are essentially random. This exploratory phase may be reduced significantly in a certain class of games using RAVE (Rapid Action Value Estimation).[13] In these games, permutations of a sequence of moves lead to the same position. Typically, they are board games in which a move involves placement of a piece or a stone on the board. In such games the value of each move is often only slightly influenced by other moves.

In RAVE, for a given game tree node N, its child nodes Ci store not only the statistics of wins in playouts started in node N but also the statistics of wins in all playouts started in node N and below it, if they contain move i (also when the move was played in the tree, between node N and a playout). This way the contents of tree nodes are influenced not only by moves played immediately in a given position but also by the same moves played later.

When using RAVE, the selection step selects the node, for which the modified UCB1 formula (1-\beta(n_i, \tilde{n}_i))\frac{w_i}{n_i} + \beta(n_i, \tilde{n}_i)\frac{\tilde{w}_i}{\tilde{n}_i} + c\sqrt{\frac{\ln t}{n_i}} has the highest value. In this formula, \tilde{w}_i and \tilde{n}_i stand for the number of won playouts containing move i and the number of all playouts containing move i, and the \beta(n_i, \tilde{n}_i) function should be close to one and to zero for relatively small and relatively big ni and \tilde{n}_i, respectively. One of many formulas for \beta(n_i, \tilde{n}_i), proposed by D. Silver,[14] says that in balanced positions one can take \beta(n_i, \tilde{n}_i)=\frac{\tilde{n}_i}{n_i+\tilde{n}_i+4b^2 n_i\tilde{n}_i}, where b is an empirically chosen constant.

Heuristics used in Monte Carlo tree search often require many parameters. There are automated methods to tune the parameters to maximize the win rate.[15]

Monte Carlo tree search can be concurrently executed by many threads or processes. There are several fundamentally different methods of its parallel execution:[16]

History

The Monte Carlo method, based on random sampling, dates back to the 1940s. Bruce Abramson explored the idea in his 1987 PhD thesis and said it "is shown to be precise, accurate, easily estimable, efficiently calculable, and domain-independent."[18] He experimented in-depth with Tic-tac-toe and then with machine generated evaluation functions for Othello and Chess. In 1992, B. Brügmann employed it for the first time in a go-playing program,[2] but his idea was not taken seriously. In 2006, called the year of the Monte Carlo revolution in Go,[19] Rémi Coulom described the application of the Monte Carlo method to game-tree search and coined the name Monte Carlo tree search,[20] L. Kocsis and Cs. Szepesvári developed the UCT algorithm,[5] and S. Gelly et al. implemented UCT in their program MoGo.[11] In 2008, MoGo achieved dan (master) level in 9×9 go,[21] and the Fuego program began to win with strong amateur players in 9×9 go.[22] In January 2012, the Zen program won 3:1 in a Go match on a 19×19 board with an amateur 2 dan player.[23]

Monte Carlo tree search has also been used in programs that play other board games (for example Hex,[25] Havannah,[26] Game of the Amazons,[27] and Arimaa[28]), real-time video games (for instance Ms. Pac-Man,[29][30] Fable Legends[31] and Total War: Rome II[32]), and nondeterministic games (such as skat,[33] poker,[34] Magic: The Gathering,[35] or Settlers of Catan[36]).

See also

References

  1. "MCTS.ai: Everything Monte Carlo Tree Search". Retrieved 2012-02-19.
  2. 1 2 Brügmann, Bernd (1993). Monte Carlo Go (PDF). Technical report, Department of Physics, Syracuse University.
  3. 1 2 G.M.J.B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, B. Bouzy (2008). "Progressive Strategies for Monte-Carlo Tree Search" (PDF). New Mathematics and Natural Computation 4 (3): 343–359. doi:10.1142/s1793005708001094.
  4. http://mcts.ai/code/python.html
  5. 1 2 Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning". Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, September 18–22, 2006, Proceedings. Lecture Notes in Computer Science 4212. Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou (eds.). Springer. pp. 282–293. ISBN 3-540-45375-X.
  6. Auer, Peter; Cesa-Bianchi, Nicolò; Fischer, Paul (2002). "Finite-time Analysis of the Multiarmed Bandit Problem" (PDF). Machine Learning 47: 235–256. doi:10.1023/a:1013689704352.
  7. Chang, Hyeong Soo; Fu, Michael C.; Hu, Jiaqiao; Marcus, Steven I. (2005). "An Adaptive Sampling Algorithm for Solving Markov Decision Processes" (PDF). Operations Research 53: 126–139.
  8. Bouzy, Bruno. "Old-fashioned Computer Go vs Monte-Carlo Go". IEEE Symposium on Computational Intelligence and Games, April 1–5, 2007, Hilton Hawaiian Village, Honolulu, Hawaii (PDF).
  9. Swiechowski, M.; Mandziuk, J., "Self-Adaptation of Playing Strategies in General Game Playing" (2010), IEEE Transactions on Computational Intelligence and AI in Games, doi: 10.1109/TCIAIG.2013.2275163, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6571225&isnumber=4804729
  10. Drake, Peter (December 2009). "The Last-Good-Reply Policy for Monte-Carlo Go". ICGA Journal 32 (4): 221–227.
  11. 1 2 3 Sylvain Gelly, Yizao Wang, Rémi Munos, Olivier Teytaud (November 2006). Modification of UCT with Patterns in Monte-Carlo Go (PDF). Technical report, INRIA.
  12. Seth Pellegrino, Peter Drake (2010). "Investigating the Effects of Playout Strength in Monte-Carlo Go". Proceedings of the 2010 International Conference on Artificial Intelligence, ICAI 2010, July 12–15, 2010, Las Vegas Nevada, USA. Hamid R. Arabnia, David de la Fuente, Elena B. Kozerenko, José Angel Olivas, Rui Chang, Peter M. LaMonica, Raymond A. Liuzzi, Ashu M. G. Solo (eds.). CSREA Press. pp. 1015–1018. ISBN 1-60132-148-1.
  13. 1 2 Sylvain Gelly, David Silver (2007). "Combining Online and Offline Knowledge in UCT". Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, June 20–24, 2007 (PDF). Zoubin Ghahramani (ed.). ACM. pp. 273–280. ISBN 978-1-59593-793-3.
  14. David Silver (2009). Reinforcement Learning and Simulation-Based Search in Computer Go (PDF). PhD thesis, University of Alberta.
  15. Rémi Coulom. "CLOP: Confident Local Optimization for Noisy Black-Box Parameter Tuning". ACG 2011: Advances in Computer Games 13 Conference, Tilburg, the Netherlands, November 20–22.
  16. Guillaume M.J-B. Chaslot, Mark H.M. Winands, H. Jaap van den Herik (2008). "Parallel Monte-Carlo Tree Search". Computers and Games, 6th International Conference, CG 2008, Beijing, China, September 29 – October 1, 2008. Proceedings (PDF). H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, Mark H. M. Winands (eds.). Springer. pp. 60–71. ISBN 978-3-540-87607-6.
  17. Markus Enzenberger, Martin Müller (2010). "A Lock-free Multithreaded Monte-Carlo Tree Search Algorithm". Advances in Computer Games: 12th International Conference, ACG 2009, Pamplona, Spain, May 11–13, 2009, Revised Papers. H. Jaap Van Den Herik, Pieter Spronck (eds.). Springer. pp. 14–20. ISBN 978-3-642-12992-6.
  18. Abramson, Bruce (1987). The Expected-Outcome Model of Two-Player Games (PDF). Technical report, Department of Computer Science, Columbia University. Retrieved 23 December 2013.
  19. Rémi Coulom (2008). "The Monte-Carlo Revolution in Go". Japanese-French Frontiers of Science Symposium (PDF).
  20. Rémi Coulom (2007). "Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search". Computers and Games, 5th International Conference, CG 2006, Turin, Italy, May 29–31, 2006. Revised Papers. H. Jaap van den Herik, Paolo Ciancarini, H. H. L. M. Donkers (eds.). Springer. pp. 72–83. ISBN 978-3-540-75537-1.
  21. Chang-Shing Lee, Mei-Hui Wang, Guillaume Chaslot, Jean-Baptiste Hoock, Arpad Rimmel, Olivier Teytaud, Shang-Rong Tsai, Shun-Chin Hsu, Tzung-Pei Hong (2009). "The Computational Intelligence of MoGo Revealed in Taiwan’s Computer Go Tournaments" (PDF). IEEE Transactions on Computational Intelligence and AI in Games 1 (1): 73–89. doi:10.1109/tciaig.2009.2018703.
  22. Markus Enzenberger, Martin Mūller (2008). Fuego – An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search (PDF). Technical report, University of Alberta.
  23. "The Shodan Go Bet". Retrieved 2012-05-02.
  24. "Sensei's Library: KGSBotRatings". Retrieved 2012-05-03.
  25. Broderick Arneson, Ryan Hayward, Philip Henderson (June 2009). "MoHex Wins Hex Tournament" (PDF). ICGA Journal 32 (2): 114–116.
  26. Timo Ewalds (2011). Playing and Solving Havannah (PDF). Master's thesis, University of Alberta.
  27. Richard J. Lorentz (2008). "Amazons Discover Monte-Carlo". Computers and Games, 6th International Conference, CG 2008, Beijing, China, September 29 – October 1, 2008. Proceedings. H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, Mark H. M. Winands (eds.). Springer. pp. 13–24. ISBN 978-3-540-87607-6.
  28. Tomáš Kozelek (2009). Methods of MCTS and the game Arimaa (PDF). Master's thesis, Charles University in Prague.
  29. Xiaocong Gan, Yun Bao, Zhangang Han (December 2011). "Real-Time Search Method in Nondeterministic Game – Ms. Pac-Man". ICGA Journal 34 (4): 209–222.
  30. Tom Pepels, Mark H. M. Winands, Marc Lanctot (September 2014). "Real-Time Monte Carlo Tree Search in Ms Pac-Man". IEEE Transactions on Computational Intelligence and AI in Games 6 (3): 245–257. doi:10.1109/tciaig.2013.2291577.
  31. "Tactical Planning and Real-time MCTS in Fable Legends". Retrieved 2015-08-27.
  32. "Monte-Carlo Tree Search in TOTAL WAR: ROME II's Campaign AI". Retrieved 2014-08-13.
  33. Michael Buro, Jeffrey Richard Long, Timothy Furtak, Nathan R. Sturtevant (2009). "Improving State Evaluation, Inference, and Search in Trick-Based Card Games". IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11–17, 2009. Craig Boutilier (ed.). pp. 1407–1413.
  34. Jonathan Rubin, Ian Watson (April 2011). "Computer poker: A review" (PDF). Artificial Intelligence 175 (5–6): 958–987. doi:10.1016/j.artint.2010.12.005.
  35. C.D. Ward, P.I. Cowling (2009). "Monte Carlo Search Applied to Card Selection in Magic: The Gathering". CIG'09 Proceedings of the 5th international conference on Computational Intelligence and Games (PDF). IEEE Press.
  36. István Szita, Guillaume Chaslot, Pieter Spronck (2010). "Monte-Carlo Tree Search in Settlers of Catan". Advances in Computer Games, 12th International Conference, ACG 2009, Pamplona, Spain, May 11–13, 2009. Revised Papers (PDF). H. Jaap van den Herik, Pieter Spronck (eds.). Springer. pp. 21–32. ISBN 978-3-642-12992-6.

Bibliography

This article is issued from Wikipedia - version of the Wednesday, March 30, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.