Quantum jump method
The quantum jump method, also known as the Monte Carlo wave function (MCWF) method, is a technique in computational physics used for simulating open quantum systems. The quantum jump method was developed by Dalibard, Castin and Mølmer, with a very similar method also developed by Carmichael in the same time frame. Other contemporaneous works on wave-function-based Monte Carlo approaches to open quantum systems include those of Dum, Zoller and Ritsch and Hegerfeldt and Wilser.[1][2]
Method
The quantum jump method is an approach which is much like the master-equation treatment except that it operates on the wave function rather than using a density matrix approach. The main component of the method is evolving the system's wave function in time with a pseudo-Hamiltonian; where at each time step, a quantum jump (discontinuous change) may take place with some probability. The calculated system state as a function of time is known as a quantum trajectory, and the desired density matrix as a function of time may be calculated by averaging over many simulated trajectories. For a Hilbert space of dimension N, the number of wave function components is equal to N while the number of density matrix components is equal to N2. Consequently, for certain problems the quantum jump method offers a performance advantage over direct master-equation approaches.[1]
Further reading
- A recent review is Plenio, M. B.; Knight, P. L. (1 January 1998). "The quantum-jump approach to dissipative dynamics in quantum optics". Reviews of Modern Physics 70 (1): 101–144. arXiv:quant-ph/9702007. Bibcode:1998RvMP...70..101P. doi:10.1103/RevModPhys.70.101.
References
- 1 2 Mølmer, K.; Castin, Y.; Dalibard, J. (1993). "Monte Carlo wave-function method in quantum optics". Journal of the Optical Society of America B 10 (3): 524. doi:10.1364/JOSAB.10.000524.
- ↑ The associated primary sources are, respectively:
- Dalibard, Jean; Castin, Yvan; Mølmer, Klaus (February 1992). "Wave-function approach to dissipative processes in quantum optics". Physical Review Letters 68 (5): 580–583. Bibcode:1992PhRvL..68..580D. doi:10.1103/PhysRevLett.68.580. PMID 10045937.
- Carmichael, Howard (1993). An Open Systems Approach to Quantum Optics. Springer-Verlag. ISBN 9780387566344.
- Dum, R.; Zoller, P.; Ritsch, H. (1992). "Monte Carlo simulation of the atomic master equation for spontaneous emission". Physical Review A 45 (7): 4879–4887. Bibcode:1992PhRvA..45.4879D. doi:10.1103/PhysRevA.45.4879. PMID 9907570.
- Hegerfeldt, G. C.; Wilser, T. S. (1992). "Classical and Quantum Systems". Proceedings of the Second International Wigner Symposium (World Scientific).