Mori domain
Not to be confused with Mori Domain.
In algebra, a Mori domain, named after Yoshiro Mori by Querré (1971, 1976), is an integral domain satisfying the ascending chain condition on integral divisorial ideals. Noetherian domains and Krull domains both have this property. A commutative ring is a Krull domain if and only if it is a Mori domain and completely integrally closed.[1] A polynomial ring over a Mori domain need not be a Mori domain. Also, the complete integral closure of a Mori domain need not be a Mori (or, equivalently, Krull) domain.
Notes
- ↑ Bourbaki AC ch. VII §1 no. 3 th. 2
References
- Barucci, Valentina (1983), "On a class of Mori domains", Communications in Algebra 11 (17): 1989–2001, doi:10.1080/00927878308822944, ISSN 0092-7872, MR 709026
- Barucci, Valentina (2000), "Mori domains", in Glaz, Sarah; Chapman, Scott T., Non-Noetherian commutative ring theory, Mathematics and its Applications 520, Dordrecht: Kluwer Acad. Publ., pp. 57–73, ISBN 978-0-7923-6492-4, MR 1858157
- Mori, Yoshiro (1953), "On the integral closure of an integral domain", Memoirs of the College of Science, University of Kyoto. Series A: Mathematics 27: 249–256
- Nishimura, Toshio (1964), "On the V-ideal of an integral domain. V", Bulletin of the Kyoto Gakugei University. Series B, Mathematics and natural science 25: 5–11, MR 0184959
- Querré, Julien (1971), "Sur une propiété des anneaux de Krull", Bulletin des Sciences Mathématiques. 2e Série 95: 341–354, ISSN 0007-4497, MR 0299596
- Querré, Julien (1975), "Sur les anneaux reflexifs", Canadian Journal of Mathematics 27 (6): 1222–1228, doi:10.4153/CJM-1975-127-5, ISSN 0008-414X, MR 0414537
- Querré, J. (1976), Cours d'algèbre, Paris: Masson, MR 0465632
This article is issued from Wikipedia - version of the Wednesday, January 27, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.