Multigraph

This article is about the mathematical concept. For other uses, see Multigraph (disambiguation).
"Pseudograph" redirects here. It is not to be confused with Pseudepigraph.
A multigraph with multiple edges (red) and several loops (blue). Not all authors allow multigraphs to have loops.

In mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called parallel edges[1]), that is, edges that have the same end nodes. Thus two vertices may be connected by more than one edge.

There are two distinct notions of multiple edges:

A multigraph is different from a hypergraph, which is a graph in which an edge can connect any number of nodes, not just two.

For some authors, the terms pseudograph and multigraph are synonymous. For others, a pseudograph is a multigraph with loops.

Undirected multigraph (edges without own identity)

A multigraph G is an ordered pair G:=(V, E) with

Undirected multigraph (edges with own identity)

A multigraph G is an ordered triple G:=(V, E, r) with

Some authors allow multigraphs to have loops, that is, an edge that connects a vertex to itself,[2] while others call these pseudographs, reserving the term multigraph for the case with no loops.[3]

Directed multigraph (edges without own identity)

A multidigraph is a directed graph which is permitted to have multiple arcs, i.e., arcs with the same source and target nodes. A multidigraph G is an ordered pair G:=(V,A) with

A mixed multigraph G:=(V,E, A) may be defined in the same way as a mixed graph.

Directed multigraph (edges with own identity)

A multidigraph or quiver G is an ordered 4-tuple G:=(V, A, s, t) with

This notion might be used to model the possible flight connections offered by an airline. In this case the multigraph would be a directed graph with pairs of directed parallel edges connecting cities to show that it is possible to fly both to and from these locations.

In category theory a small category can be defined as a multidigraph (with edges having their own identity) equipped with an associative composition law and a distinguished self-loop at each vertex serving as the left and right identity for composition. For this reason, in category theory the term graph is standardly taken to mean "multidigraph", and the underlying multidigraph of a category is called its underlying digraph.

Labeling

Multigraphs and multidigraphs also support the notion of graph labeling, in a similar way. However there is no unity in terminology in this case.

The definitions of labeled multigraphs and labeled multidigraphs are similar, and we define only the latter ones here.

Definition 1: A labeled multidigraph is a labeled graph with labeled arcs.

Formally: A labeled multidigraph G is a multigraph with labeled vertices and arcs. Formally it is an 8-tuple G=(\Sigma_V, \Sigma_A, V, A, s, t, \ell_V, \ell_A) where

Definition 2: A labeled multidigraph is a labeled graph with multiple labeled arcs, i.e. arcs with the same end vertices and the same arc label (note that this notion of a labeled graph is different from the notion given by the article graph labeling).

See also

Notes

  1. For example, see Balakrishnan 1997, p. 1 or Chartrand and Zhang 2012, p. 26.
  2. For example, see Bollobás 2002, p. 7 or Diestel 2010, p. 28.
  3. For example, see Wilson 2002, p. 6 or Chartrand and Zhang 2012, pp. 26-27.

References

External links

This article is issued from Wikipedia - version of the Thursday, March 24, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.