Nearly completely decomposable Markov chain

In probability theory, a nearly completely decomposable (NCD) Markov chain is a Markov chain where the state-space can be partitioned in such a way that movement within a partition occurs much more frequently than movement between partitions.[1] Particularly efficient algorithms exist to compute the stationary distribution of Markov chains with this property.[2]

Definition

Ando and Fisher define a completely decomposable matrix as one where "an identical rearrangement of rows and columns leaves a set of square submatrices on the principal diagonal and zeros everywhere else." A nearly completely decomposable matrix is one where an identical rearrangement of rows and columns leaves a set of square submatrices on the principal diagonal and small nonzeros everywhere else.[3][4]

Example

A Markov chain with transition matrix

P = 
\begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
\end{pmatrix} + \epsilon \begin{pmatrix}
-\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & -\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & -\frac{1}{2} \\
\end{pmatrix}

is nearly completely decomposable if ε is small (say 0.1).[5]

Stationary distribution algorithms

Special-purpose iterative algorithms have been designed for NCD Markov chains[2] though the multi–level algorithm, a general purpose algorithm,[6] has been shown experimentally to be competitive and in some cases significantly faster.[7]

See also

References

  1. ↑ Kontovasilis, K. P.; Mitrou, N. M. (1995). "Markov-Modulated Traffic with Nearly Complete Decomposability Characteristics and Associated Fluid Queueing Models". Advances in Applied Probability 27 (4): 1144–1185. doi:10.2307/1427937.
  2. 1 2 Koury, J. R.; McAllister, D. F.; Stewart, W. J. (1984). "Iterative Methods for Computing Stationary Distributions of Nearly Completely Decomposable Markov Chains". SIAM. J. on Algebraic and Discrete Methods 5 (2): 164–186. doi:10.1137/0605019.
  3. ↑ Ando, A.; Fisher, F. M. (1963). "Near-Decomposability, Partition and Aggregation, and the Relevance of Stability Discussions". International Economic Review 4 (1): 53–67. doi:10.2307/2525455.
  4. ↑ Courtois, P. J. (1975). "Error Analysis in Nearly-Completely Decomposable Stochastic Systems". Econometrica 43 (4): 691–709. doi:10.2307/1913078.
  5. ↑ Example 1.1 from Yin, George; Zhang, Qing (2005). Discrete-time Markov chains: two-time-scale methods and applications. Springer. p. 8. ISBN 0-387-21948-X.
  6. ↑ Horton, G.; Leutenegger, S. T. (1994). "A multi-level solution algorithm for steady-state Markov chains". ACM SIGMETRICS Performance Evaluation Review 22: 191. doi:10.1145/183019.183040.
  7. ↑ Leutenegger, Scott T.; Horton, Graham (June 1994). On the Utility of the Multi-Level Algorithm for the Solution of Nearly Completely Decomposable Markov Chains (ICASE Report No. 94-44) (PDF) (Technical report). NASA. Contractor Report 194929. We present experimental results indicating that the general- purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks. Markov chains, Multi- level, Numerical solution.
This article is issued from Wikipedia - version of the Thursday, September 03, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.