Neuroprotection

Neuroprotection refers to the relative preservation of neuronal structure and/or function.[1] In the case of an ongoing insult (a neurodegenerative insult) the relative preservation of neuronal integrity implies a reduction in the rate of neuronal loss over time, which can be expressed as a differential equation.[1] It is a widely explored treatment option for many central nervous system (CNS) disorders including neurodegenerative diseases, stroke, traumatic brain injury, spinal cord injury, and acute management of neurotoxin consumption (ie. methamphetamine overdoses). Neuroprotection aims to prevent or slow disease progression and secondary injuries by halting or at least slowing the loss of neurons.[2] Despite differences in symptoms or injuries associated with CNS disorders, many of the mechanisms behind neurodegeneration are the same. Common mechanisms include increased levels in oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation.[2][3][4] Of these mechanisms, neuroprotective treatments often target oxidative stress and excitotoxicity—both of which are highly associated with CNS disorders. Not only can oxidative stress and excitotoxicity trigger neuron cell death but when combined they have synergistic effects that cause even more degradation than on their own.[5] Thus limiting excitotoxicity and oxidative stress is a very important aspect of neuroprotection. Common neuroprotective treatments are glutamate antagonists and antioxidants, which aim to limit excitotoxicity and oxidative stress respectively.

Excitotoxicity

Main article: Excitotoxicity

Glutamate excitotoxicity is one of the most important mechanisms known to trigger cell death in CNS disorders. Over-excitation of glutamate receptors, specifically NMDA receptors, allows for an increase in calcium ion (Ca2+) influx due to the lack of specificity in the ion channel opened upon glutamate binding.[5][6] As Ca2+ accumulates in the neuron, the buffering levels of mitochondrial Ca2+ sequestration are exceeded, which has major consequences for the neuron.[5] Because Ca2+ is a secondary messenger and regulates a large number of downstream processes, accumulation of Ca2+ causes improper regulation of these processes, eventually leading to cell death.[7][8][9] Ca2+ is also thought to trigger neuroinflammation, a key component in all CNS disorders[5]

Glutamate antagonists

Glutamate antagonists are the primary treatment used to prevent or help control excitotoxicity in CNS disorders. The goal of these antagonists is to inhibit the binding of glutamate to NMDA receptors such that accumulation of Ca2+ and therefore excitotoxicity can be avoided. Use of glutamate antagonists presents a huge obstacle in that the treatment must overcome selectivity such that binding is only inhibited when excitotoxicity is present. A number of glutamate antagonists have been explored as options in CNS disorders, but many are found to lack efficacy or have intolerable side effects. Glutamate antagonists are a hot topic of research. Below are some of the treatments that have promising results for the future:

Oxidative stress

Main article: Oxidative stress

Increased levels of oxidative stress can be caused in part by neuroinflammation, which is a highly recognized part of cerebral ischemia as well as many neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and Amyotrophic Lateral Sclerosis.[4][5] The increased levels of oxidative stress are widely targeted in neuroprotective treatments because of their role in causing neuron apoptosis. Oxidative stress can directly cause neuron cell death or it can trigger a cascade of events that leads to protein misfolding, proteasomal malfunction, mitochondrial dysfunction, or glial cell activation.[2][3][4][13] If one of these events is triggered, further neurodegradation is caused as each of these events causes neuron cell apoptosis.[3][4][13] By decreasing oxidative stress through neuroprotective treatments, further neurodegradation can be inhibited.

Antioxidants

Main article: Antioxidants

Antioxidants are the primary treatment used to control oxidative stress levels. Antioxidants work to eliminate reactive oxygen species, which are the prime cause of neurodegradation. The effectiveness of antioxidants in preventing further neurodegradation is not only disease dependent but can also depend on gender, ethnicity, and age. Listed below are common antioxidants shown to be effective in reducing oxidative stress in at least one neurodegenerative disease:

Stimulants

NMDA receptor stimulants can lead to glutamate and calcium excitotoxicity and neuroinflammation. Some other stimulants, in appropriate doses, can however be neuroprotective.

Other neuroprotective treatments

More neuroprotective treatment options exist that target different mechanisms of neurodegradation. Continued research is being done in an effort to find any method effective in preventing the onset or progression of neurodegenerative diseases or secondary injuries. These include:

See also

References

  1. 1 2 Casson RJ, Chidlow G, Ebneter A, Wood JP, Crowston J, Goldberg I (2012). "Translational neuroprotection research in glaucoma: a review of definitions and principles". Clin. Experiment. Ophthalmol. 40 (4): 350–7. doi:10.1111/j.1442-9071.2011.02563.x. PMID 22697056.
  2. 1 2 3 Seidl SE, Potashkin JA (2011). "The promise of neuroprotective agents in Parkinson's disease". Front Neurol 2: 68. doi:10.3389/fneur.2011.00068. PMC 3221408. PMID 22125548.
  3. 1 2 3 4 5 Dunnett SB, Björklund A (June 1999). "Prospects for new restorative and neuroprotective treatments in Parkinson's disease". Nature 399 (6738 Suppl): A32–9. doi:10.1038/399a032. PMID 10392578.
  4. 1 2 3 4 5 Andersen JK (July 2004). "Oxidative stress in neurodegeneration: cause or consequence?". Nat. Med. 10 Suppl (7): S18–25. doi:10.1038/nrn1434. PMID 15298006.
  5. 1 2 3 4 5 Zádori D, Klivényi P, Szalárdy L, Fülöp F, Toldi J, Vécsei L (June 2012). "Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: Novel therapeutic strategies for neurodegenerative disorders". J Neurol Sci 322 (1–2): 187–91. doi:10.1016/j.jns.2012.06.004. PMID 22749004.
  6. 1 2 Zhang C, Du F, Shi M, Ye R, Cheng H, Han J, Ma L, Cao R, Rao Z, Zhao G (January 2012). "Ginsenoside Rd protects neurons against glutamate-induced excitotoxicity by inhibiting ca(2+) influx". Cell. Mol. Neurobiol. 32 (1): 121–8. doi:10.1007/s10571-011-9742-x. PMID 21811848.
  7. Sattler R, Tymianski M (2000). "Molecular mechanisms of calcium-dependent excitotoxicity". J. Mol. Med. 78 (1): 3–13. doi:10.1007/s001090000077. PMID 10759025.
  8. Sattler R, Tymianski M (2001). "Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death". Mol. Neurobiol. 24 (1–3): 107–29. doi:10.1385/MN:24:1-3:107. PMID 11831548.
  9. 1 2 Luoma JI, Stern CM, Mermelstein PG (August 2012). "Progesterone inhibition of neuronal calcium signaling underlies aspects of progesterone-mediated neuroprotection". J. Steroid Biochem. Mol. Biol. 131 (1–2): 30–6. doi:10.1016/j.jsbmb.2011.11.002. PMC 3303940. PMID 22101209.
  10. Liu, S.-b.; Zhang, N.; Guo, Y.-y.; Zhao, R.; Shi, T.-y.; Feng, S.-f.; Wang, S.-q.; Yang, Q.; Li, X.-q.; Wu, Y.-m.; Ma, L.; Hou, Y.; Xiong, L.-z.; Zhang, W.; Zhao, M.-g. (2012). "G-Protein-Coupled Receptor 30 Mediates Rapid Neuroprotective Effects of Estrogen via Depression of NR2B-Containing NMDA Receptors". Journal of Neuroscience 32 (14): 4887–4900. doi:10.1523/JNEUROSCI.5828-11.2012. ISSN 0270-6474. PMID 22492045.
  11. Yan J, Xu Y, Zhu C, Zhang L, Wu A, Yang Y, Xiong Z, Deng C, Huang XF, Yenari MA, Yang YG, Ying W, Wang Q (2011). Calixto, Joao B, ed. "Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the association with anti-inflammatory responses". PLoS ONE 6 (6): e20945. doi:10.1371/journal.pone.0020945. PMC 3120752. PMID 21731633.
  12. Volbracht, Christiane; Van Beek, Johan; Zhu, Changlian; Blomgren, Klas; Leist, Marcel (May 1, 2006). "Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity". European Journal of Neuroscience 23 (10): 2611–2622. doi:10.1111/j.1460-9568.2006.04787.x. ISSN 1460-9568.
  13. 1 2 Liu T, Bitan G (March 2012). "Modulating self-assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: strategies and mechanisms". ChemMedChem 7 (3): 359–74. doi:10.1002/cmdc.201100585. PMID 22323134.
  14. Berk M, Malhi GS, Gray LJ, Dean OM (2013). "The promise of N-acetylcysteine in neuropsychiatry". Trends Pharmacol. Sci. 34 (3): 167–77. doi:10.1016/j.tips.2013.01.001. PMID 23369637.
  15. Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M (2013). "Putative neuroprotective agents in neuropsychiatric disorders". Prog. Neuropsychopharmacol. Biol. Psychiatry 42: 135–45. doi:10.1016/j.pnpbp.2012.11.007. PMID 23178231.
  16. Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, Lamari FN. (2006). "Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents". J Agric Food Chem. 54 (23): 87628. doi:10.1021/jf061932a. PMID 17090119.
  17. Ochiai T, Shimeno H, Mishima K, Iwasaki K, Fujiwara M, Tanaka H, Shoyama Y, Toda A, Eyanagi R, Soeda S (2007). "Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo". Biochim. Biophys. Acta 1770 (4): 578–84. doi:10.1016/j.bbagen.2006.11.012. PMID 17215084.
  18. Zheng YQ, Liu JX, Wang JN, Xu L. (2006). "Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia". Brain Res. 1138: 86–94. doi:10.1016/j.brainres.2006.12.064. PMID 17274961.
  19. Behl C, Skutella T, Lezoualc'h F, Post A, Widmann M, Newton CJ, Holsboer F (April 1997). "Neuroprotection against oxidative stress by estrogens: structure-activity relationship". Mol. Pharmacol. 51 (4): 535–41. PMID 9106616.
  20. Denny Joseph KM, Muralidhara M (May 2012). "Fish oil prophylaxis attenuates rotenone-induced oxidative impairments and mitochondrial dysfunctions in rat brain". Food Chem. Toxicol. 50 (5): 1529–37. doi:10.1016/j.fct.2012.01.020. PMID 22289576.
  21. Tikka TM, Koistinaho JE (June 2001). "Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia". J. Immunol. 166 (12): 7527–33. doi:10.4049/jimmunol.166.12.7527. PMID 11390507.
  22. Kuang X, Scofield VL, Yan M, Stoica G, Liu N, Wong PK (August 2009). "Attenuation of oxidative stress, inflammation and apoptosis by minocycline prevents retrovirus-induced neurodegeneration in mice". Brain Res. 1286: 174–84. doi:10.1016/j.brainres.2009.06.007. PMC 3402231. PMID 19523933.
  23. Yu W, Fu YC, Wang W (March 2012). "Cellular and molecular effects of resveratrol in health and disease". J. Cell. Biochem. 113 (3): 752–9. doi:10.1002/jcb.23431. PMID 22065601.
  24. Simão F, Matté A, Matté C, Soares FM, Wyse AT, Netto CA, Salbego CG (October 2011). "Resveratrol prevents oxidative stress and inhibition of Na(+)K(+)-ATPase activity induced by transient global cerebral ischemia in rats". J. Nutr. Biochem. 22 (10): 921–8. doi:10.1016/j.jnutbio.2010.07.013. PMID 21208792.
  25. Nivison-Smith L, Acosta ML, Misra S, O'Brien BJ, Kalloniatis M (2014). "Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina". Neurochem. Int. 66C: 1–14. doi:10.1016/j.neuint.2014.01.003. PMID 24412512.
  26. Herrera-Mundo N, Sitges M (2013). "Vinpocetine and α-tocopherol prevent the increase in DA and oxidative stress induced by 3-NPA in striatum isolated nerve endings". J. Neurochem. 124 (2): 233–40. doi:10.1111/jnc.12082. PMID 23121080.
  27. Zhao YY, Yu JZ, Li QY, Ma CG, Lu CZ, Xiao BG (2011). "TSPO-specific ligand vinpocetine exerts a neuroprotective effect by suppressing microglial inflammation". Neuron Glia Biol. 7 (2-4): 187–97. doi:10.1017/S1740925X12000129. PMID 22874716.
  28. Bönöczk P, Panczel G, Nagy Z (2002). "Vinpocetine increases cerebral blood flow and oxygenation in stroke patients: a near infrared spectroscopy and transcranial Doppler study". Eur J Ultrasound 15 (1-2): 85–91. doi:10.1016/s0929-8266(02)00006-x. PMID 12044859.
  29. Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. (2005). "Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality.". Ann Intern Med. 142 (1): 37–46. doi:10.7326/0003-4819-142-1-200501040-00110. PMID 15537682.
  30. DeNoon D (2006-08-11). "Nicotine Slows Parkinson's Disease". Retrieved 2009-12-27.
  31. Peck P (2002-07-25). "Smoking Significantly Increases Risk of Alzheimer's Disease Among Those Who Have No Genetic Predisposition". Retrieved 2009-12-27.
  32. Fox M (2007-10-24). "Nicotine may ease Parkinson's symptoms: U.S. study". Reuters. Retrieved 2009-12-27.
  33. Kelton MC, Kahn HJ, Conrath CL, Newhouse PA (2000). "The effects of nicotine on Parkinson's disease". Brain Cogn 43 (1-3): 274–82. PMID 10857708.
  34. 1 2 Ross GW, Petrovitch H (2001). "Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson's disease". Drugs Aging 18 (11): 797–806. doi:10.2165/00002512-200118110-00001. PMID 11772120.
  35. Xu K, Xu YH, Chen JF, Schwarzschild MA (2010). "Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson's disease". Neuroscience 167 (2): 475–81. doi:10.1016/j.neuroscience.2010.02.020. PMC 2849921. PMID 20167258.
  36. Aoyama K, Matsumura N, Watabe M, Wang F, Kikuchi-Utsumi K, Nakaki T (2011). "Caffeine and uric acid mediate glutathione synthesis for neuroprotection". Neuroscience 181: 206–15. doi:10.1016/j.neuroscience.2011.02.047. PMID 21371533.
  37. Li W, Lee MK (June 2005). "Antiapoptotic property of human alpha-synuclein in neuronal cell lines is associated with the inhibition of caspase-3 but not caspase-9 activity". J. Neurochem. 93 (6): 1542–50. doi:10.1111/j.1471-4159.2005.03146.x. PMID 15935070.
  38. Gunasekaran R, Narayani RS, Vijayalakshmi K, Alladi PA, Shobha K, Nalini A, Sathyaprabha TN, Raju TR (February 2009). "Exposure to cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients alters Nav1.6 and Kv1.6 channel expression in rat spinal motor neurons". Brain Res. 1255: 170–9. doi:10.1016/j.brainres.2008.11.099. PMID 19109933.
  39. Ge P, Luo Y, Wang H, Ling F (December 2009). "Anti-protein aggregation is a potential target for preventing delayed neuronal death after transient ischemia". Med. Hypotheses 73 (6): 994–5. doi:10.1016/j.mehy.2008.10.041. PMID 19560879.
  40. Sinclair HL, Andrews PJ (2010). "Bench-to-bedside review: Hypothermia in traumatic brain injury". Crit Care 14 (1): 204. doi:10.1186/cc8220. PMC 2875496. PMID 20236503.
  41. A New Avenue for Lithium: Intervention in Traumatic Brain Injury (2014)

Further reading

Articles

Books

This article is issued from Wikipedia - version of the Monday, April 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.