Neville theta functions

For other θ functions, see Theta function (disambiguation).

In mathematics, the Neville theta functions, named after Eric Harold Neville,[1] are defined as follows:[2][3] [4]

 \theta_c(z,m)=\sqrt {2}\sqrt {\pi }\sqrt [4]{q(m)} \sum _{k=0}^\infty (q(m))^{k(k+1)} \cos \left( \frac 1 2 \cdot \frac {( 2k+1) \pi z}{K(m)} \right) \frac {1}{\sqrt {K(m)}} \frac {1}{\sqrt [4]{m}}
 \theta_d(z,m)=1/2\,\sqrt {2}\sqrt {\pi } \left( 1+2\,\sum _{k=1}^\infty (q(m))^{k^2} \cos \left( \frac {\pi zk}{K(m)} \right) \right) \frac {1}{\sqrt {K(m)}}
 \theta_n(z, m) = 1/2\,\sqrt {\pi } \sqrt {2} \left( 1+2\sum _{k=1}^\infty (-1)^k (q(m))^{k^2} \cos \left( \frac {\pi zk}{K(m)} \right) \right) \frac {1}{\sqrt [4]{1-m}} \frac {1}{\sqrt {K(m)}}
 \theta_s(z, m)=\sqrt {\pi }\sqrt {2} \sqrt [4]{q(m)} \sum _{k=0}^\infty (-1)^k (q(m))^{k(k+1) } \sin \left( 1/2\,\frac { (2k+1) 
\pi z}{K(m)} \right) \frac {1}{\sqrt [4]{1-m}} \frac{1}{\sqrt [4]{m}} \frac {1}{\sqrt {K(m)}}

where:

Examples

Substitute z = 2.5, m = 0.3 into the above definitions of Neville theta functions(using Maple) once obtain the following(consistent with results from wolfram math).

Symmetry

Complex 3D plots

Implementation

NetvilleThetaC[z,m], NevilleThetaD[z,m], NevilleThetaN[z,m], and NevilleThetaS[z,m] are built-in functions of Mathematica[6] No such functions in Maple.

Notes

  1. Abramowitz and Stegun, pp. 578-579
  2. Neville (1944)
  3. wolfram Mathematic
  4. wolfram math

References

This article is issued from Wikipedia - version of the Thursday, February 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.