Neville theta functions
For other θ functions, see Theta function (disambiguation).
In mathematics, the Neville theta functions, named after Eric Harold Neville,[1] are defined as follows:[2][3] [4]
where:


is the elliptic nome
Examples
Substitute z = 2.5, m = 0.3 into the above definitions of Neville theta functions(using Maple) once obtain the following(consistent with results from wolfram math).
Symmetry
Complex 3D plots
![]() |
![]() |
![]() |
![]() |
Implementation
NetvilleThetaC[z,m], NevilleThetaD[z,m], NevilleThetaN[z,m], and NevilleThetaS[z,m] are built-in functions of Mathematica[6] No such functions in Maple.
Notes
- ↑ Abramowitz and Stegun, pp. 578-579
- ↑ Neville (1944)
- ↑ wolfram Mathematic
- ↑ wolfram math
- ↑
- ↑
References
- Abramowitz, Milton; Stegun, Irene A., eds. (December 1972) [1964]. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55 (10 ed.). New York, USA: United States Department of Commerce, National Bureau of Standards; Dover Publications. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642.
- Neville, E. H. (Eric Harold) (1944). Jacobian Elliptic Functions. Oxford Clarendon Press.
- Weisstein, Eric W., "Neville Theta Functions", MathWorld.
This article is issued from Wikipedia - version of the Thursday, February 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
![\theta_c(z,m)=\sqrt {2}\sqrt {\pi }\sqrt [4]{q(m)} \sum _{k=0}^\infty (q(m))^{k(k+1)} \cos \left( \frac 1 2 \cdot \frac {( 2k+1) \pi z}{K(m)} \right) \frac {1}{\sqrt {K(m)}} \frac {1}{\sqrt [4]{m}}](../I/m/66a0176e22669c858cea85f44a0ad5b5.png)

![\theta_n(z, m) = 1/2\,\sqrt {\pi } \sqrt {2} \left( 1+2\sum _{k=1}^\infty (-1)^k (q(m))^{k^2} \cos \left( \frac {\pi zk}{K(m)} \right) \right) \frac {1}{\sqrt [4]{1-m}} \frac {1}{\sqrt {K(m)}}](../I/m/164adfcde499c402d9d3c31349acabe6.png)
![\theta_s(z, m)=\sqrt {\pi }\sqrt {2} \sqrt [4]{q(m)} \sum _{k=0}^\infty (-1)^k (q(m))^{k(k+1) } \sin \left( 1/2\,\frac { (2k+1)
\pi z}{K(m)} \right) \frac {1}{\sqrt [4]{1-m}} \frac{1}{\sqrt [4]{m}} \frac {1}{\sqrt {K(m)}}](../I/m/63892bd3c283b88184f335c8c43e7791.png)











