Noether's second theorem

In mathematics and theoretical physics, Noether's second theorem relates symmetries of an action functional with a system of differential equations.[1] The action S of a physical system is an integral of a so-called Lagrangian function L, from which the system's behavior can be determined by the principle of least action.

Specifically, the theorem says that if the action has an infinite-dimensional Lie algebra of infinitesimal symmetries parameterized linearly by k arbitrary functions and their derivatives up to order m, then the functional derivatives of L satisfy a system of k differential equations.

Noether's second theorem is sometimes used in gauge theory. Gauge theories are the basic elements of all modern field theories of physics, such as the prevailing Standard Model.

See also

Notes

  1. Noether E (1918), "Invariante Variationsprobleme", Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse 1918: 235–257

References

External links

This article is issued from Wikipedia - version of the Friday, March 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.