Pole star

For other uses, see Polestar (disambiguation).
"North Star" redirects here. For other uses, see North Star (disambiguation).
A French "navisphere": a type of celestial globe formerly used for navigation at sea

A pole star is a visible star, preferably a prominent one, that is approximately aligned with the Earth's axis of rotation; that is, a star whose apparent position is close to one of the celestial poles, and which lies approximately directly overhead when viewed from the Earth's North Pole or South Pole. A similar concept also applies to planets other than the Earth. In practice, the term pole star usually refers to Polaris, which is the current northern pole star, also known as the North Star.

The south celestial pole lacks a bright star like Polaris to mark its position. At present, the naked-eye star nearest to this imaginary point is the faint Sigma Octantis, which is sometimes known as the South Star.

While other stars' apparent positions in the sky change throughout the night, as they appear to rotate around the celestial poles, pole stars' apparent positions remain virtually fixed. This makes them especially useful in celestial navigation: they are a dependable indicator of the direction toward the respective geographic pole although not exact; they are virtually fixed, and their angle of elevation can also be used to determine latitude.

The identity of the pole stars gradually changes over time because the celestial poles exhibit a slow continuous drift through the star field. The primary reason for this is the precession of the Earth's rotational axis, which causes its orientation to change over time. If the stars were fixed in space, precession would cause the celestial poles to trace out imaginary circles on the celestial sphere approximately once every 26,000 years, passing close to different stars at different times. In fact, the stars themselves also exhibit proper motion, which causes a very small additional apparent drift of pole stars.

Time-lapse video of Polaris and neighboring stars.
A long exposure (45 min.) photo of Polaris and neighbouring stars, taken at Ehrenbürg (Franconia), 2001.

Present


The closest bright star to the north celestial pole is Polaris. At magnitude 1.97 (variable), it is the brightest star in the Ursa Minor constellation (at the end of the "handle" of the "Little Dipper" asterism).[1] As of October 2012 its declination is +89°198 (at epoch J2000 it was +89°1551.2). Therefore, it always appears due north in the sky to a precision better than one degree, and the angle it makes with respect to the true horizon (after correcting for refraction and other factors) is equal to the latitude of the observer to better than one degree. It is consequently known as Polaris (from Latin stella polaris "pole star"). It was formerly sometimes known as Cynosura, from a time before it was the pole star, from its Greek name meaning "dog's tail" (as the constellation of Ursa Minor was interpreted as a dog, not a bear, in antiquity).

A common method of locating Polaris in the sky is to follow along the line of the so-called "pointer" stars in the bowl of the Big Dipper asterism, specifically, the two stars farthest from its "handle". The arc between the pointer stars and Polaris is nearly five times greater than the arc between the pointer stars.[2]

Historical


The North Star has historically been used for navigation since Late Antiquity, both to find the direction of north and to determine latitude.

The path of the north celestial pole amongst the stars due to the effect of precession, with dates shown

Due to the precession of the equinoxes (as well as the stars' proper motions), the role of North Star passes from one star to another.

In 3000 BCE, the faint star Thuban in the constellation Draco was the North Star. At magnitude 3.67 (fourth magnitude) it is only one-fifth as bright as Polaris, and today it is invisible in light-polluted urban skies.

During the 1st millennium BCE, β Ursae Minoris was the bright star closest to the celestial pole, but it was never close enough to be taken as marking the pole, and the Greek navigator Pytheas in ca. 320 BCE described the celestial pole as devoid of stars.

In the Roman era, the celestial pole was about equally distant from α Ursae Minoris (Cynosura) and β Ursae Minoris (Kochab).

α Ursae Minoris was described as ἀειφανής "always visible" by Stobaeus in the 5th century, when it was still removed from the celestial pole by about 8°. It was known as scip-steorra ("ship-star") in 10th-century Anglo-Saxon England, reflecting its use in navigation.

The name stella polaris has been given to α Ursae Minoris since at least the 16th century, even though at that time it was still several degrees away from the celestial pole. Gemma Frisius determined this distance as 3°7' in the year 1547.[3]

The precession of the equinoxes takes about 25,770 years to complete a cycle. Polaris' mean position (taking account of precession and proper motion) will reach a maximum declination of +89°32'23", which translates to 1657" (or 0.4603°) from the celestial north pole, in February 2102. Its maximum apparent declination (taking account of nutation and aberration) will be +89°32'50.62", which is 1629" (or 0.4526°) from the celestial north pole, on 24 March 2100.[4]

Gamma Cephei (also known as Alrai, situated 45 light-years away) will become closer to the northern celestial pole than Polaris around 3000 CE. Iota Cephei will become the pole star some time around 5200 CE. First-magnitude Deneb will be within 5° of the North Pole in 10,000 CE.

When Polaris becomes the North Star again around 27,800 CE, due to its proper motion it then will be farther away from the pole than it is now, while in 23,600 BCE it was closer to the pole.

Southern pole star (South Star)

Currently, there is no South Star as useful as Polaris. Sigma Octantis is the closest naked-eye star to the south Celestial pole, but at apparent magnitude 5.45 it is barely visible on a clear night, making it unusable for navigational purposes.[5] It is a yellow giant 275 light years from Earth. Its angular separation from the pole is about 1° (as of 2000). The Southern Cross constellation functions as an approximate southern pole constellation, by pointing to where a southern pole star would be. At the equator, it is possible to see both Polaris and the Southern Cross.[6] [7]

The path of the south Celestial pole amongst the stars due to the effect of precession
Series of shots showing the rotation of the Earth's axis relative to the south celestial pole. The Magellanic Clouds and Southern Cross are clearly visible. Near the end of the video, the rise of the moon illuminates the scene.

The Celestial south pole is moving toward the Southern Cross, which has pointed to the south pole for the last 2000 years or so. As a consequence, the constellation is no longer visible from subtropical northern latitudes, as it was in the time of the ancient Greeks.

Around 200 BCE, the star Beta Hydri was the nearest bright star to the Celestial south pole. Around 2800 BCE, Achernar was only 8 degrees from the south pole.

In the next 7500 years, the south Celestial pole will pass close to the stars Gamma Chamaeleontis (4200 CE), I Carinae, Omega Carinae (5800 CE), Upsilon Carinae, Iota Carinae (Aspidiske, 8100 CE) and Delta Velorum (9200 CE).[8] From the eightieth to the ninetieth centuries, the south Celestial pole will travel through the False Cross. Around 14,000 CE, when Vega is only 4° from the North Pole, Canopus will be only 8° from the South Pole and thus circumpolar on the latitude of Bali (8°S).[9]

Other planets

Pole stars of other planets are defined analogously: they are stars (brighter than 6th magnitude, i.e., visible to the naked eye under ideal conditions) that most closely coincide with the projection of the planet's axis of rotation onto the Celestial sphere. Different planets have different pole stars because their axes are oriented differently. (See Poles of astronomical bodies.)

In world cultures

In Japan, the Pole Star was represented by Myōken Bosatsu (妙見菩薩).

In the Greek Magical Papyri the Pole star was identified with Set-Typhon, and given authority over the gods.

In Hindu mythology, the pole star is called Dhruva.

In Hawaiian mythology, the pole star is called Kiopa'a.[12]

In Chinese mythology, Emperor Zhuanxu is mentioned as a god of the Pole Star.

See also

References

  1. van Leeuwen, F. (2007). "HIP 11767". Hipparcos, the New Reduction. Retrieved 2011-03-01.
  2. http://www-istp.gsfc.nasa.gov/stargaze/Spolaris.htm
  3. Gemmae Frisii de astrolabo catholico liber: quo latissime patentis instrumenti multiplex usus explicatur, & quicquid uspiam rerum mathematicarum tradi possit continetur, Steelsius (1556), p. 20
  4. Jean Meeus, Mathematical Astronomy Morsels Ch.50; Willmann-Bell 1997
  5. "Sigma Octantis". Jumk.De. 6 August 2013.
  6. "The North Star: Polaris". Space.com. May 7, 2012. Retrieved 6 August 2013.
  7. Hobbs, Trace (May 21, 2013). "Night Sky Near the Equator". Wordpress. Retrieved 6 August 2013.
  8. http://myweb.tiscali.co.uk/moonkmft/Articles/Precession.html
  9. Kieron Taylor (1 March 1994). "Precession". Sheffield Astronomical Society. Retrieved 2013-08-06.
  10. 2004. Starry Night Pro, Version 5.8.4. Imaginova. ISBN 978-0-07-333666-4. www.starrynight.com
  11. http://www.eknent.com/etc/mars_np.png
  12. Kepelino's Traditions of Hawaii, by Kepelino, ca 1830-ca 1878. Beckwith, Martha Warren, 1871-1959.

External links

Look up pole star in Wiktionary, the free dictionary.
Look up Pole Star in Wiktionary, the free dictionary.
This article is issued from Wikipedia - version of the Monday, May 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.