Observational study

In fields such as epidemiology, social sciences, psychology and statistics, an observational study draws inferences from a sample to a population where the independent variable is not under the control of the researcher because of ethical concerns or logistical constraints. One common observational study is about the possible effect of a treatment on subjects, where the assignment of subjects into a treated group versus a control group is outside the control of the investigator.[1][2] This is in contrast with experiments, such as randomized controlled trials, where each subject is randomly assigned to a treated group or a control group.

Weaknesses

The independent variable may be beyond the control of the investigator for a variety of reasons:

Types of observational studies

Degree of usefulness and reliability

Although observational studies cannot be used as reliable sources to make statements of fact about the "safety, efficacy, or effectiveness" of a practice,[3] they can still be of use for some other things:

"[T]hey can: 1) provide information on “real world” use and practice; 2) detect signals about the benefits and risks of...[the] use [of practices] in the general population; 3) help formulate hypotheses to be tested in subsequent experiments; 4) provide part of the community-level data needed to design more informative pragmatic clinical trials; and 5) inform clinical practice."[3]

Bias and compensating methods

In all of those cases, if a randomized experiment cannot be carried out, the alternative line of investigation suffers from the problem that the decision of which subjects receive the treatment is not entirely random and thus is a potential source of bias. A major challenge in conducting observational studies is to draw inferences that are acceptably free from influences by overt biases, as well as to assess the influence of potential hidden biases.

An observer of an uncontrolled experiment (or process) records potential factors and the data output: the goal is to determine the effects of the factors. Sometimes the recorded factors may not be directly causing the differences in the output. There may be more important factors which were not recorded but are, in fact, causal. Also, recorded or unrecorded factors may be correlated which may yield incorrect conclusions. Finally, as the number of recorded factors increases, the likelihood increases that at least one of the recorded factors will be highly correlated with the data output simply by chance.

In lieu of experimental control, multivariate statistical techniques allow the approximation of experimental control with statistical control, which accounts for the influences of observed factors that might influence a cause-and-effect relationship. In healthcare and the social sciences, investigators may use matching to compare units that nonrandomly received the treatment and control. One common approach is to use propensity score matching in order to reduce confounding.[4]

A report from the Cochrane Collaboration in 2014 came to the conclusion that observational studies are very similar in results reported by similarly conducted randomized controlled trials. In other words, it reported little evidence for significant effect estimate differences between observational studies and randomized controlled trials, regardless of specific observational study design, heterogeneity, or inclusion of studies of pharmacological interventions. It therefore recommended that factors other than study design per se need to be considered when exploring reasons for a lack of agreement between results of randomized controlled trials and observational studies.[5]

In 2007, several prominent medical researchers issued the Strengthening the reporting of observational studies in epidemiology (STROBE) statement, in which they called for observational studies to conform to 22 criteria that would make their conclusions easier to understand and generalise.[6]

See also

References

  1. "Observational study". Retrieved 2008-06-25.
  2. Porta, M., ed. (2008). A Dictionary of Epidemiology (5th ed.). New York: Oxford University Press. ISBN 9780195314496.
  3. 1 2 "Although observational studies cannot provide definitive evidence of safety, efficacy, or effectiveness, they can: 1) provide information on "real world" use and practice; 2) detect signals about the benefits and risks of complementary therapies use in the general population; 3) help formulate hypotheses to be tested in subsequent experiments; 4) provide part of the community-level data needed to design more informative pragmatic clinical trials; and 5) inform clinical practice." "Observational Studies and Secondary Data Analyses To Assess Outcomes in Complementary and Integrative Health Care." Richard Nahin, Ph.D., M.P.H., Senior Advisor for Scientific Coordination and Outreach, National Center for Complementary and Integrative Health, June 25, 2012
  4. Rosenbaum, Paul R. 2009. Design of Observational Studies. New York: Springer.
  5. Anglemyer, Andrew; Horvath, Hacsi T; Bero, Lisa; Bero, Lisa (2014). "Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials". Cochrane Database Syst Rev 4: MR000034. doi:10.1002/14651858.MR000034.pub2. PMID 24782322.
  6. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2007). "The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies". PLoS Med. 4 (10): e296. doi:10.1371/journal.pmed.0040296. PMC 2020495. PMID 17941714.

Further reading

This article is issued from Wikipedia - version of the Thursday, February 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.