Octagonal bipyramid
Octagonal bipyramid | |
---|---|
![]() | |
Type | bipyramid |
Schläfli symbol | { } + {8} |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Faces | 16 triangles |
Edges | 24 |
Vertices | 10 |
Face configuration | V4.4.8 |
Symmetry group | D8h, [8,2], (*228), order 32 |
Rotation group | D8, [8,2]+, (228), order 16 |
Dual | octagonal prism |
Properties | convex, face-transitive |
The octagonal bipyramid is one of the infinite set of bipyramids, dual to the infinite prisms. If an octagonal bipyramid is to be face-transitive, all faces must be isosceles triangles.
Images
It can be drawn as a tiling on a sphere which also represents the fundamental domains of [4,2], *422 symmetry:
Related polyhedra
Polyhedron | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
---|---|---|---|---|---|---|---|---|---|
Coxeter | ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
Tiling | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Config. | V2.4.4 | V3.4.4 | V4.4.4 | V5.4.4 | V6.4.4 | V7.4.4 | V8.4.4 | V9.4.4 | V10.4.4 |
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Symmetry *n42 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
---|---|---|---|---|---|---|---|---|
*242 [2,4] |
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] | |
Omnitruncated figure |
![]() 4.8.4 |
![]() 4.8.6 |
![]() 4.8.8 |
![]() 4.8.10 |
![]() 4.8.12 |
![]() 4.8.14 |
![]() 4.8.16 |
![]() 4.8.∞ |
Omnitruncated duals |
![]() V4.8.4 |
![]() V4.8.6 |
![]() V4.8.8 |
![]() V4.8.10 |
![]() V4.8.12 |
![]() V4.8.14 |
![]() V4.8.16 |
![]() V4.8.∞ |
External links
- Weisstein, Eric W., "Dipyramid", MathWorld.
- Olshevsky, George, Bipyramid at Glossary for Hyperspace.
- Virtual Reality Polyhedra The Encyclopedia of Polyhedra
- VRML models <8>
- Conway Notation for Polyhedra Try: dP8
This article is issued from Wikipedia - version of the Wednesday, June 25, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.