White-tailed deer

White-tailed deer
Male white-tailed deer (buck or stag)
Female white-tailed deer (doe)
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Family: Cervidae
Subfamily: Capreolinae
Genus: Odocoileus
Species: O. virginianus
Binomial name
Odocoileus virginianus
(Zimmermann, 1780)
Subspecies

38, see text

White-tailed deer range map
Synonyms
  • Dama virginiana Zimmermann, 1780
  • Dama virginianus Zimmermann, 1780

The white-tailed deer (Odocoileus virginianus), also known as the whitetail, is a medium-sized deer native to the United States, Canada, Mexico, Central America, and South America as far south as Peru and Bolivia.[2] It has also been introduced to New Zealand, Cuba, Jamaica, Hispaniola, Puerto Rico, Bahamas, Lesser Antilles, and some countries in Europe, such as Finland, the Czech Republic, and Serbia.[3][4][5] In the Americas, it is the most widely distributed wild ungulate.

In North America, the species is widely distributed east of the Rocky Mountains, but elsewhere, it is mostly replaced by the black-tailed or mule deer (Odocoileus hemionus). In western North America, it is found in aspen parklands and deciduous river bottomlands within the central and northern Great Plains, and in mixed deciduous riparian corridors, river valley bottomlands, and lower foothills of the northern Rocky Mountain regions from South Dakota and Wyoming to northeastern British Columbia, including the Montana Valley and Foothill grasslands.

The conversion of land adjacent to the northern Rockies into agriculture use and partial clear-cutting of coniferous trees (resulting in widespread deciduous vegetation) has been favorable to the white-tailed deer and has pushed its distribution to as far north as Fort St. John, British Columbia. Populations of deer around the Great Lakes have also expanded their range northwards, due to conversion of land to agricultural uses favoring more deciduous vegetation, and local caribou and moose populations. The westernmost population of the species, known as the Columbian white-tailed deer, once was widespread in the mixed forests along the Willamette and Cowlitz River valleys of western Oregon and southwestern Washington, but today its numbers have been considerably reduced, and it is classified as near-threatened.

Taxonomy

Fawn waving its white tail

Some taxonomists have attempted to separate white-tailed deer into a host of subspecies, based largely in morphological differences. Genetic studies, however, suggest fewer subspecies within the animal's range, as compared to the 30 to 40 subspecies that some scientists described in the last century. The Florida Key deer, O. virginianus clavium, and the Columbian white-tailed deer, O. virginianus leucurus, are both listed as endangered under the U.S. Endangered Species Act. In the United States, the Virginia white-tail, O. virginianus virginianus, is among the most widespread subspecies. The white-tailed deer species has tremendous genetic variation and is adaptable to several environments. Several local deer populations, especially in the southern states, are descended from white-tailed deer transplanted from various localities east of the Continental Divide. Some of these deer populations may have been from as far north as the Great Lakes region to as far west as Texas, yet are also quite at home in the Appalachian and Piedmont regions of the south. These deer over time have intermixed with the local indigenous deer (O. virginianus virginianus and/or O. virginianus macrourus) populations.

Male whitetail in Kansas

Central and South America have a complex number of white-tailed deer subspecies that range from Guatemala as far south as Peru. This list of subspecies of deer is more exhaustive than the list of North American subspecies, and the number of subspecies is also questionable. However, the white-tailed deer populations in these areas are difficult to study, due to overhunting in many parts and a lack of protection. Some areas no longer carry deer, so it is difficult to assess the genetic difference of these animals.

Subspecies

O. v. truei, female, Costa Rica
Three O. v. borealis, New Hampshire

Some subspecies names, ordered alphabetically:[6][7]

North America

South America

Range map of subspecies
North America
Central and South America

Description

Female with tail in alarm posture

The deer's coat is a reddish-brown in the spring and summer and turns to a grey-brown throughout the fall and winter. The deer can be recognized by the characteristic white underside to its tail. It will raise its tail when it is alarmed to flag the other deer. A population of white-tailed deer in New York is entirely white (except for areas like their noses and toes)—not albino—in color. The former Seneca Army Depot in Romulus, New York, has the largest known concentration of white deer. Strong conservation efforts have allowed white deer to thrive within the confines of the depot. White-tailed deer's horizontally slit pupils allow for good night vision and color vision during the day.

Size and weight

The white-tailed deer is highly variable in size, generally following Bergmann's rule that the average size is larger farther away from the Equator. North American male deer (also known as a buck) usually weigh 45 kilograms (100 lb), but in rare cases, bucks in excess of 125 kilograms (275 lb) have been recorded. Mature bucks over 180 kilograms (400 lb) have been recorded in the northernmost reaches of their native range, specifically, Minnesota and Ontario. In 1926, Carl J. Lenander, Jr. took a white-tailed buck near Tofte, MN, that weighed 183 kg (403 lb) after it was field-dressed (internal organs removed) and was estimated at 232 kg (511 lb) when alive.[9] The female (doe) in North America usually weighs from 40 to 90 kg (88 to 198 lb). White-tailed deer from the tropics and the Florida Keys are markedly smaller-bodied than temperate populations, averaging 35 to 50 kg (77 to 110 lb), with an occasional adult female as small as 25 kg (55 lb).[10] White-tailed deer from the Andes are larger than other tropical deer of this species and have thick, slightly woolly looking fur. Length ranges from 95 to 220 cm (37 to 87 in), including a tail of 10 to 36.5 cm (3.9 to 14.4 in), and the shoulder height is 53 to 120 cm (21 to 47 in).[11][12] Including all races, the average summer weight of adult males is 68 kg (150 lb) and is 45.3 kg (100 lb) in adult females.[13]

Deer have dichromatic (two-color) vision with blue and yellow primaries;[14] humans have trichromatic vision. Thus, deer poorly distinguish the oranges and reds that stand out so well to humans.[15] This makes it very convenient to use deer-hunter orange as a safety color on caps and clothing to avoid accidental shootings during hunting seasons.

Antlers

Male white-tailed deer

Males regrow their antlers every year. About one in 10,000 females also have antlers, although this is usually associated with hermaphroditism.[16] Bucks without branching antlers are often termed "spikehorn", "spiked bucks", "spike bucks", or simply "spikes/spikers". The spikes can be quite long or very short. Length and branching of antlers are determined by nutrition, age, and genetics. Rack growth tends to be very important from late spring until about a month before velvet sheds. During this time, damage done to the racks tends to be permanent. Healthy deer in some areas that are well-fed can have eight-point branching antlers as yearlings (1.5 years old).[17] The number of points, the length, or thickness of the antlers is a general indication of age, but cannot be relied upon for positive aging. A better indication of age is the length of the snout and the color of the coat, with older deer tending to have longer snouts and grayer coats. Some say spiked-antler deer should be culled from the population to produce larger branching antler genetics (antler size does not indicate overall health), and some bucks' antlers never will be wall trophies. Good antler-growth nutritional needs (calcium) and good genetics combine to produce wall trophies in some of their range.[18] Spiked bucks are different from "button bucks" or "nubbin' bucks", that are male fawns and are generally about six to nine months of age during their first winter. They have skin-covered nobs on their heads. They can have bony protrusions up to a half inch in length, but that is very rare, and they are not the same as spikes.

White-tailed bucks with antlers still in velvet, August 2011

Antlers begin to grow in late spring, covered with a highly vascularised tissue known as velvet. Bucks either have a typical or atypical antler arrangement. Typical antlers are symmetrical and the points grow straight up off the main beam. Atypical antlers are asymmetrical and the points may project at any angle from the main beam. These descriptions are not the only limitations for typical and atypical antler arrangement. The Boone and Crockett or Pope and Young scoring systems also define relative degrees of typicality and atypicality by procedures to measure what proportion of the antlers are asymmetrical. Therefore, bucks with only slight asymmetry are scored as "typical". A buck's inside spread can be from 3 to 25 in (8–64 cm). Bucks shed their antlers when all females have been bred, from late December to February.

Ecology

White-tailed deer are generalists and can adapt to a wide variety of habitats.[19] The largest deer occur in the temperate regions of Canada and United States. The northern white-tailed deer (O. v. borealis), Dakota white-tailed deer (O. v. dacotensis), and northwest white-tailed deer (O. v. ochrourus) are some of the largest animals, with large antlers. The smallest deer occur in the Florida Keys and in partially wooded lowlands in the neotropics.

Although most often thought of as forest animals depending on relatively small openings and edges, white-tailed deer can equally adapt themselves to life in more open prairie, savanna woodlands, and sage communities as in the Southwestern United States and northern Mexico. These savanna-adapted deer have relatively large antlers in proportion to their body size and large tails. Also, a noticeable difference exists in size between male and female deer of the savannas. The Texas white-tailed deer (O. v. texanus), of the prairies and oak savannas of Texas and parts of Mexico, are the largest savanna-adapted deer in the Southwest, with impressive antlers that might rival deer found in Canada and the northern United States. Populations of Arizona (O. v. couesi) and Carmen Mountains (O. v. carminis) white-tailed deer inhabit montane mixed oak and pine woodland communities.[20] The Arizona and Carmen Mountains deer are smaller, but may also have impressive antlers, considering their size. The white-tailed deer of the Llanos region of Colombia and Venezuela (O. v. apurensis and O. v. gymnotis) have antler dimensions similar to the Arizona white-tailed deer.

White-tailed deer during late winter

In western regions of the United States and Canada, the white-tailed deer range overlaps with those of the mule deer. White-tail incursions in the Trans-Pecos region of Texas have resulted in some hybrids. In the extreme north of the range, their habitat is also used by moose in some areas. White-tailed deer may occur in areas that are also exploited by elk (wapiti) such as in mixed deciduous river valley bottomlands and formerly in the mixed deciduous forest of eastern United States. In places such as Glacier National Park in Montana and several national parks in the Columbian Mountains (Mount Revelstoke National Park) and Canadian Rocky Mountains, as well as in the Yukon Territory ( Yoho National Park and Kootenay National Park), white-tailed deer are shy and more reclusive than the coexisting mule deer, elk, and moose.

Central American white-tailed deer prefer tropical and subtropical dry broadleaf forests, seasonal mixed deciduous forests, savanna, and adjacent wetland habitats over dense tropical and subtropical moist broadleaf forests. South American subspecies of white-tailed deer live in two types of environments. The first type, similar to the Central American deer, consists of savannas, dry deciduous forests, and riparian corridors that cover much of Venezuela and eastern Colombia.[21] The other type is the higher elevation mountain grassland/mixed forest ecozones in the Andes Mountains, from Venezuela to Peru. The Andean white-tailed deer seem to retain gray coats due to the colder weather at high altitudes, whereas the lowland savanna forms retain the reddish brown coats. South American white-tailed deer, like those in Central America, also generally avoid dense moist broadleaf forests.

Since the second half of the 19th century, white-tailed deer have been introduced to Europe.[22] A population in the Brdy area remains stable today.[23] In 1935, white-tailed deer were introduced to Finland. The introduction was successful, and the deer have recently begun spreading through northern Scandinavia and southern Karelia, competing with, and sometimes displacing, native species. The current population of some 30,000 deer originated from four animals provided by Finnish Americans from Minnesota.

Diet

White-tailed deer eat large amounts of food, commonly eating legumes and foraging on other plants, including shoots, leaves, cacti (in deserts), prairie forbs,[24] and grasses. They also eat acorns, fruit, and corn. Their special stomachs allow them to eat some things humans cannot, such as mushrooms and poison ivy. Their diets vary by season according to availability of food sources. They also eat hay, grass, white clover, and other foods they can find in a farm yard. Though almost entirely herbivorous, white-tailed deer have been known to opportunistically feed on nesting songbirds, field mice, and birds trapped in mist nets, if the need arises.[25]

The white-tailed deer is a ruminant, which means it has a four-chambered stomach. Each chamber has a different and specific function that allows the deer to eat a variety of different foods, digesting it at a later time in a safe area of cover. The stomach hosts a complex set of microbes that change as the deer's diet changes through the seasons. If the microbes necessary for digestion of a particular food (e.g., hay) are absent, it will not be digested.[26]

Predators

Several natural predators of white-tailed deer occur. Wolves, cougars, American alligators, jaguars (in the tropics), and humans are the most effective natural predators of white-tailed deer. These predators frequently pick out easily caught young or infirm deer (which is believed to improve the genetic stock of a population), but can and do take healthy adults of any size. Bobcats, Canada lynx, bears, wolverines, and packs of coyotes usually prey mainly on fawns. Bears may sometimes attack adult deer, while lynxes, coyotes, and wolverines are most likely to take adult deer when the ungulates are weakened by harsh winter weather.[11] Many scavengers rely on deer as carrion, including New World vultures, raptors, foxes, and corvids. Few wild predators can afford to be picky and any will readily consume deer as carrion. Records exist of American crows attempting to prey on white-tailed deer fawns by pecking around their face and eyes, though no accounts of success are given.[27] Occasionally, both golden and bald eagles may capture deer fawns with their talons.[28] In one case, a golden eagle was filmed in Illinois unsuccessfully trying to prey on a large mature white-tailed deer.[29]

White-tailed deer typically respond to the presence of potential predators by breathing very heavily (also called blowing) and fleeing. When they blow, the sound alerts other deer in the area. As they run, the flash of their white tails warns other deer. This especially serves to warns fawns when their mother is alarmed.[30] Most natural predators of white-tailed deer hunt by ambush, although canids may engage in an extended chase, hoping to exhaust the prey. Felids typically try to suffocate the deer by biting the throat. Cougars and jaguars will initially knock the deer off balance with their powerful forelegs, whereas the smaller bobcats and lynxes will jump astride the deer to deliver a killing bite. In the case of canids and wolverines, the predators bite at the limbs and flanks, hobbling the deer, until they can reach vital organs and kill it through loss of blood. Bears, which usually target fawns, often simply knock down the prey and then start eating it while it is still alive.[31][32] Alligators snatch deer as they try to drink from or cross bodies of water, grabbing them with their powerful jaws and dragging them into the water to drown.[33]

Most primary natural predators of white-tailed deer have been basically extirpated in eastern North America, with a very small number of reintroduced red wolves, which are nearly extinct, around North Carolina and a small remnant population of Florida panthers, a subspecies of the cougar. Gray wolves, the leading cause of deer mortality where they overlap, co-occur with whitetails in northern Minnesota, Wisconsin, Michigan, and parts of Canada.[30] This almost certainly plays a factor in the overpopulation issues with this species.[30] Coyotes, widespread and with a rapidly expanding population, are often the only major nonhuman predator of the species, besides an occasional domestic dog.[30] In some areas, American black bears are also significant predators.[31][32] In northcentral Pennsylvania, black bears were found to be nearly as common predators of fawns as coyotes.[34] Bobcats, still fairly widespread, usually only exploit deer as prey when smaller prey is scarce.[35] Discussions have occurred regarding the possible reintroduction of gray wolves and cougars to sections of the eastern United States, largely because of the apparent controlling effect they have through deer predation on local ecosystems, as has been illustrated in the reintroduction of wolves to Yellowstone National Park and their controlling effect on previously overpopulated elk.[36] However, due to the heavy urban development in much of the East and fear for livestock and human lives, such ideas have ultimately been rejected by local communities and/or by government services and have not been carried through.[37][38][39] Replacing most natural predators is the automobile with Oakland County, Michigan having the record number on annual average of collisions between white tailed deer and vehicles.

In areas where they are heavily hunted by humans, deer run almost immediately from people and are quite wary even where not heavily hunted. In most areas where hunting may occur deer seem to develop an acute sense of time and a fondness for metro parks and golf courses. This rather odd occurrence is best noted in Michigan, where in the lower peninsula around late August early September they begin to move out of less developed areas in favor of living near human settlements.

The deer of Virginia can run faster than their predators and have been recorded at speeds of 75 km (47 mi) per hour;[40] this ranks them amongst the fastest of all cervids, alongside the Eurasian roe deer. They can also jump 2.7 m (8.9 ft) high and up to 10 m (33 ft) in length. When shot at, the white-tailed deer will run at high speeds with its tail down. If frightened, the deer will hop in a zig-zag with its tail straight up. If the deer feels extremely threatened, however, it may charge the person or predator causing the threat, using its antlers or, if none are present, its head to fight off the threat.

Forest alteration

In certain parts of the eastern United States, high deer densities have caused large reductions in plant biomass, including the density and heights of certain forest wildflowers, tree seedlings, and shrubs. Although they can be seen as a nuisance species, white tail deer also play an important role in biodiversity.[41][42] At the same time, increases in browse-tolerant grasses and sedges and unpalatable ferns have often accompanied intensive deer herbivory.[43] Changes to the structure of forest understories have, in turn, altered the composition and abundance of forest bird communities in some areas.[44] Deer activity has also been shown to increase herbaceous plant diversity, particularly in disturbed areas, by reducing competitively dominant plants;[45] and to increase the growth rates of important canopy trees, perhaps by increased nutrient inputs into the soil.[46] In northeastern hardwood forests, high-density deer populations affect plant succession, particularly following clear-cuts and patch cuts. In succession without deer, annual herbs and woody plants are followed by commercially valuable, shade-tolerant oak and maple. The shade-tolerant trees prevent the invasion of less commercial cherry and American beech, which are stronger nutrient competitors, but not as shade tolerant. Although deer eat shade-tolerant plants and acorns, this is not the only way deer can shift the balance in favor of nutrient competitors. Deer consuming earlier-succession plants allows in enough light for nutrient competitors to invade. Since slow-growing oaks need several decades to develop root systems sufficient to compete with faster-growing species, removal of the canopy prior to that point amplifies the effect of deer on succession. High-density deer populations possibly could browse eastern hemlock seedlings out of existence in northern hardwood forests;[47] however, this scenario seems unlikely, given that deer browsing is not considered the critical factor preventing hemlock re-establishment at large scales.[48]

Ecologists have also expressed concern over the facilitative effect high deer populations have on invasions of exotic plant species. In a study of eastern hemlock forests, browsing by white-tailed deer caused populations of three exotic plants to rise faster than they do in the areas which are absent of deer. Seedlings of the three invading species rose exponentially with deer density, while the most common native species fell exponentially with deer density, because deer were preferentially eating the native species. The effects of deer on the invasive and native plants were magnified in cases of canopy disturbance.[49]

Behavior

These bucks were pursuing a pair of does across the Loxahatchee River in Florida—the does lost them by entering a mangrove thicket too dense for the bucks' antlers.

Males compete for the opportunity of breeding females. Sparring among males determines a dominance hierarchy.[50] Bucks attempt to copulate with as many females as possible, losing physical condition, since they rarely eat or rest during the rut. The general geographical trend is for the rut to be shorter in duration at increased latitude. Many factors determine how intense the "rutting season" will be; air temperature is a major one. Any time the temperature rises above 40 °F (4 °C), the males do much less traveling looking for females, else they will be subject to overheating or dehydrating. Another factor for the strength in rutting activity is competition. If numerous males are in a particular area, then they compete more for the females. If fewer males or more females are present, then the selection process will not need to be as competitive.

Reproduction

Fawn lying on grass

Females enter estrus, colloquially called the rut, in the autumn, normally in late October or early November, triggered mainly by the declining photoperiod. Sexual maturation of females depends on population density, as well as availability of food.[51] Young females often flee from an area heavily populated with males. Some does may be as young as six months when they reach sexual maturity, but the average age of maturity is 18 months.[52] Copulation consists of an ejaculatory thrust[53] which takes place during a brief copulatory jump.[54]

Females give birth to one to three spotted young, known as fawns, in mid- to late spring, generally in May or June. Fawns lose their spots during the first summer and weigh from 44 to 77 lb (20 to 35 kg) by the first winter. Male fawns tend to be slightly larger and heavier than females. For the first four weeks, fawns mostly lie still and hide in vegetation while their mothers forage. They are then able to follow their mothers on foraging trips. They are usually weaned after 8–10 weeks, but cases have been seen where mothers have continued to allow nursing long after the fawns have lost their spots (for several months, or until the end of fall) as seen by rehabilitators and other studies. Males leave their mothers after a year and females leave after two.

Bucks are generally sexually mature at 1.5 years old and begin to breed even in populations stacked with older bucks.

Communication

White-tailed deer have many forms of communication involving sounds, scent, body language, and marking. In addition to the aforementioned blowing in the presence of danger, all white-tailed deer are capable of producing audible noises unique to each animal. Fawns release a high-pitched squeal, known as a bleat, to call out to their mothers.[55] This bleat deepens as the fawn grows until it becomes the grunt of the mature deer, a guttural sound that attracts the attention of any other deer in the area. A doe makes maternal grunts when searching for her bedded fawns.[55] Bucks also grunt, at a pitch lower than that of the doe; this grunt deepens as the buck matures. In addition to grunting, both does and bucks also snort, a sound that often signals an imminent threat. Mature bucks also produce a grunt-snort-wheeze pattern, unique to each animal, that asserts its dominance, aggression, and hostility.[55] Another way white-tailed deer communicate is through the use of their white tail. When spooked, it will raise its tail to warn the other deer in the immediate area.

Marking

White-tailed deer possess many glands that allow them to produce scents, some of which are so potent they can be detected by the human nose. Four major glands are the preorbital, forehead, tarsal, and metatarsal glands. Secretions from the preorbital glands (in front of the eye) were thought to be rubbed on tree branches, but research suggests this is not so. Scent from the forehead or sudoriferous glands (found on the head, between the antlers and eyes) is used to deposit scent on branches that overhang "scrapes" (areas scraped by the deer's front hooves prior to rub-urination). The tarsal glands are found on the upper inside of the hock (middle joint) on each hind leg. Scent is deposited from these glands when deer walk through and rub against vegetation. These scrapes are used by bucks as a sort of "sign-post" by which bucks know which other bucks are in the area, and to let does know a buck is regularly passing through the area—for breeding purposes. The scent from the metatarsal glands, found on the outside of each hind leg, between the ankle and hooves, may be used as an alarm scent. The scent from the interdigital glands, which are located between the hooves of each foot, emit a yellow waxy substance with an offensive odor. Deer can be seen stomping their hooves if they sense danger through sight, sound, or smell; this action leaves an excessive amount of odor for the purpose of warning other deer of possible danger.

Throughout the year, deer rub-urinate, a process during which a deer squats while urinating so urine will run down the insides of the deer's legs, over the tarsal glands, and onto the hair covering these glands. Bucks rub-urinate more frequently during the breeding season.[56] Secretions from the tarsal gland mix with the urine and bacteria to produce a strong-smelling odor. During the breeding season, does release hormones and pheromones that tell bucks a doe is in heat and able to breed. Bucks also rub trees and shrubs with their antlers and heads during the breeding season, possibly transferring scent from the forehead glands to the tree, leaving a scent other deer can detect.[57]

Sign-post marking (scrapes and rubs) is a very obvious way white-tailed deer communicate.[57] Although bucks do most of the marking, does visit these locations often. To make a rub, a buck uses his antlers to strip the bark off small-diameter trees, helping to mark his territory and polish his antlers. To mark areas they regularly pass through, bucks make scrapes. Often occurring in patterns known as scrape lines, scrapes are areas where a buck has used his front hooves to expose bare earth. They often rub-urinate into these scrapes, which are often found under twigs that have been marked with scent from the forehead glands.

Human interactions

Rescued fawn being kept as a pet in a farm near Cumaral, Colombia
Three White-tailed deer spotted in Buena Vista, Virginia

By the early 20th century, commercial exploitation and unregulated hunting had severely depressed deer populations in much of their range.[58] For example, by about 1930, the U.S. population was thought to number about 300,000.[59] After an outcry by hunters and other conservation ecologists, commercial exploitation of deer became illegal and conservation programs along with regulated hunting were introduced. In 2005, estimates put the deer population in the United States at around 30 million.[60] Conservation practices have proved so successful, in parts of their range, the white-tailed deer populations currently far exceed their cultural carrying capacity and the animal may be considered a nuisance.[61][62] A reduction in natural predators (which normally cull young, sick, or infirm specimens) has undoubtedly contributed to locally abundant populations.

Car that suffered major damage after striking a white-tailed deer in Wisconsin

At high population densities, farmers can suffer economic damage by deer feeding on cash crops, especially in corn and orchards. It has become nearly impossible to grow some crops in some areas unless very burdensome deer-deterring measures are taken. Deer are excellent fence-jumpers, and their fear of motion and sounds meant to scare them away is soon dulled. Timber harvesting and forest clearance have historically resulted in increased deer population densities,[63][64] which in turn have slowed the rate of reforestation following logging in some areas. High densities of deer can have severe impacts on native plants and animals in parks and natural areas; however, deer browsing can also promote plant and animal diversity in some areas.[65][66] Deer can also cause substantial damage to landscape plants in suburban areas, leading to limited hunting or trapping to relocate or sterilize them. In parts of the Eastern US with high deer populations and fragmented woodlands, deer often wander into suburban and urban habitats that are less than ideal for the species.

Deer–vehicle collisions

Motor vehicle collisions with deer are a serious problem in many parts of the animal's range, especially at night and during rutting season, causing injuries and fatalities among both deer and humans. Vehicular damage can be substantial in some cases.[67] In the United States, such collisions increased from 200,000 in 1980 to 500,000 in 1991.[68] By 2009, the insurance industry estimated 2.4 million deer–vehicle collisions had occurred over the past two years, estimating damage cost to be over 7 billion dollars and 300 human deaths. Despite the alarming high rate of these accidents, the effect on deer density is still quite low. Vehicle collisions of deer were monitored for two years in Virginia, and the collective annual mortality did not surpass 20% of the estimated deer population.[69]

Many techniques have been investigated to prevent road-side mortality. Fences or road under- or over passes have shown decreased deer-vehicle collisions, but are expensive and difficult to implement on a large scale.[70][71] Roadside habitat modifications could also successfully decrease the number of collisions along roadways.[71] An essential procedure in understanding factors resulting in accidents is to quantify risks, which involves the driver's behavior in terms of safe speed and ability to observe the deer. They suggest reducing speed limits during the winter months when deer density is exceptionally high would likely reduce deer-vehicle collisions, but this may be an impractical solution.[70]

Diseases

Another issue that exists with high deer density is the spreading of infectious diseases. Increased deer populations lead to increased transmission of tick-borne diseases, which pose a threat to human health, to livestock, and to other deer. Deer are the primary host and vector for the adult black-legged tick, which transmits the Lyme disease bacterium to humans.[72] Lyme disease is the most common vector-borne disease in the country and is found in twelve states in Eastern America. In 2009, it affected more than 38,000 people. Furthermore, the incidence of Lyme disease seems to reflect deer density in the eastern United States, which suggests a strong correlation. White-tailed deer also serve as intermediate hosts for many diseases that infect humans through ticks, such as Rocky Mountain spotted fever.[68][69]

Cultural significance

Odocoileus virginianus skull, part of an exhibition on the cultural artifacts of the Cora people of Western Mexico.

In the U.S., the species is the state animal of Arkansas, Illinois, Michigan, Mississippi, Nebraska, New Hampshire, Ohio, Pennsylvania, and South Carolina, the wildlife symbol of Wisconsin, and game animal of Oklahoma. The profile of a white-tailed deer buck caps the coat of arms of Vermont and can be seen in the flag of Vermont and in stained glass at the Vermont State House. It is the national animal of Honduras, and the provincial animal of Canadian Saskatchewan and Finnish Pirkanmaa. Texas is home to the most white-tailed deer of any U.S. state or Canadian province, with an estimated population of over four million. Notably high populations of white-tailed deer occur in the Edwards Plateau of Central Texas. Michigan, Minnesota, Iowa, Mississippi, Missouri, New Jersey, Illinois, Wisconsin, Maryland, New York, North Dakota, Pennsylvania, and Indiana also boast high deer densities. In 1884, one of the first hunts of white-tailed deer in Europe was conducted in Opočno and Dobříš (Brdy Mountains area), in what is now the Czech Republic.

See also

References

  1. Gallina, S. & Lopez Arevalo, H. (2008). Odocoileus virginianus. In: IUCN 2008. IUCN Red List of Threatened Species. Retrieved 8 April 2009. Database entry includes a brief justification of why this species is of least concern.
  2. http://maps.iucnredlist.org/map.html?id=42394
  3. http://jamaicachm.org.jm/PDF/August2007.pdf
  4. http://www.arthurgrosset.com/mammals/white-taileddeer.html
  5. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1093&context=icwdm_wdmconfproc
  6. White-tailed deer, Mammals Species of the World. 3rd. ed.
  7. Cervidae, Deer's Life
  8. "Living with Wildlife. Deer.".
  9. "The Outdoor Life Book of World Records". Outdoor Life. Retrieved 2011-02-20.
  10. "White-tailed deer and red brocket deer of Costa Rican Fauna". 1-costaricalink.com. Retrieved 2011-02-20.
  11. 1 2 "ADW: Odocoileus virginianus: Information". Animaldiversity.ummz.umich.edu. 2011-02-13. Retrieved 2011-02-20.
  12. Boitani, Luigi, Simon & Schuster's Guide to Mammals. Simon & Schuster/Touchstone Books (1984), ISBN 978-0-671-42805-1
  13. (2011). Archived June 20, 2012, at the Wayback Machine.
  14. VerCauteren, Kurt C. and Michael J. Pipas. (2003). "A review of color vision in white-tailed deer". Wildlife Society Bulletin 31 (3): 684–691. Retrieved 2013-09-20.
  15. FWC, Deer colorblind to orange, but if you glow ..., Wakulla.com, February 23, 2009. This is a report of
    G. H. Jacobs, J. F. Deegan, J. Neitz, B. P. Murphy, K. V. Miller and R. L. Marchinton, "Electrophysiological measurements of spectral mechanisms in the retinas of two cervids: white-tailed deer (Odocoileus virginianus) and fallow deer (Dama dama)", Journal of Comparative Physiology A, volume 174, number 5, pages 551-557, 1994.
  16. Wislocki, G.B. (1954). "Antlers in Female Deer, with a Report of Three Cases in Odocoileus". Journal of Mammalogy 35 (4): 486–495. doi:10.2307/1375571.
  17. "Understanding Spike Buck Harvest" (PDF). Texas Parks and Wildlife Department. Retrieved 2011-02-20.
  18. "The Management of Spike Bucks in a White-Tailed Deer Population" (PDF). Texas Parks and Wildlife Department. Retrieved 2011-02-20.
  19. Christian Alejandro, Delfin Alfonso (2010). "Comparison of geographic distribution models of white-tailed deer Odocoileus virginianus (Zimmermann, 1780) subspecies in Mexico: biological and management implications". Therya 1 (1): 41–68.
  20. Folliott, P. F. and Gallina, S. (eds). (1981). Deer biology, habitat requirements and Management in Western North America. Instituto de Ecología, A. C., México, D.F
  21. Brokx, P. A. (1984). White-tailed deer of South America. In: L.K. Halls (ed.), Ecology and Management of the White-Tailed Deer, pp. 525-546. Stackpole Company, Harrisburg, PA.
  22. Erhardová-Kotrlá, B. (1971). The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. Academia, Prague, 155 pp.
  23. "Biolib-Czech Republic, Odocoileus virginianus;". Biolib.cz. Retrieved 2011-02-20.
  24. "WHITE TAILED DEER FOOD HABITS AND PREFERENCES IN THE CROSS TIMBERS AND PRAIRIES REGION OF TEXAS.". Retrieved 2015-11-16.
  25. "White-tailed Deer (Odocoileus virginianus) Predation on Grassland Songbird Nestlings". The American Midland Naturalist (The American Midland Naturalist) 144: 419–422. 2000. doi:10.1674/0003-0031(2000)144[0419:WTDOVP]2.0.CO;2. Retrieved 2011-02-20.
  26. Nelson, Richard. Heart and Blood, Living With Deer In America, Chap. 1
  27. Kilham, Lawrence (1990). The American Crow and Common Raven Texas A&M University Press. ISBN 0890964661
  28. Ferguson-Lees, J.; Christie, D. (2001). Raptors of the World. London: Christopher Helm. ISBN 0-7136-8026-1.
  29. "Golden Eagle attacks White-tailed Deer at Nachusa Grasslands!". Ilbirds.com. Retrieved 2013-09-20.
  30. 1 2 3 4 http://www.science.smith.edu/msi/pdf/i0076-3519-388-01-0001.pdf
  31. 1 2 Mathews, N. E.; Porter, W. F. (1988). "Black bear predation on white-tailed deer neonates in the central Adirondacks". Canadian Journal of Zoology 66 (5): 1241–1242. doi:10.1139/z88-179.
  32. 1 2 Ozoga, J. J.; Clute, R.K. (1988). "Mortality rates of marked and unmarked fawns". Journal of Wildlife Management 52 (3): 549–551. doi:10.2307/3801608.
  33. "Conservationreport.com". Conservationreport.com. Retrieved 2013-09-20.
  34. Survival Rates, Cause-specific Mortailty, and Landscape Influence on Survival of White-tailed Deer Fawns in Northcentral PA
  35. Labisky, Ronald F.; Boulay, Margaret C. (1998). "Behaviors of Bobcats Preying on White-tailed Deer in the Everglades". The American Midland Naturalist 139 (2): 275–281. doi:10.1674/0003-0031(1998)139[0275:bobpow]2.0.co;2.
  36. "Wolves of Yellowstone - Yellowstone National Park (U.S. National Park Service)". Nps.gov. Retrieved 2013-09-20.
  37. "Reintroduction of Wolves". Apnmag.com. Retrieved 2013-09-20.
  38. "Northeast Region, U.S. Fish and Wildlife Service - Gray Wolf". Fws.gov. Retrieved 2013-09-20.
  39. "Big Cat Tales - NYS Dept. of Environmental Conservation". Dec.ny.gov. Retrieved 2013-09-20.
  40. "Animaux.org/Cerf de Virginie". Animaux.org. Retrieved 2013-09-20.
  41. Augustine, DJ; Frelich, LE (1998). "Effects of White-Tailed Deer on Populations of an Understory Forb in Fragmented Deciduous Forests". Conservation Biology 12 (5): 995–1004. doi:10.1046/j.1523-1739.1998.97248.x.
  42. Cote, S.D.; Rooney, T.P.; Tremblay, J.; Dussault, C.; Waller, D.M. (2004). "Ecological impacts of deer overabundance". Annual Review of Ecology, Evolution, and Systematics 35: 113–47. doi:10.1146/annurev.ecolsys.35.021103.105725.
  43. Rooney, T.P. (2009). "High white-tailed deer densities benefit graminoids and contribute to biotic homogenization of forest ground-layer vegetation". Plant Ecology 202: 103–111. doi:10.1007/s11258-008-9489-8.
  44. McShea, W.J.; Rappole, J.H. (2000). "Managing the abundance and diversity of breeding bird populations through manipulation of deer populations". Conservation Biology 14: 1161–1170. doi:10.1046/j.1523-1739.2000.99210.x.
  45. Royo, Alejandro A.; Collins, Rachel; Adams, Mary Beth; Kirschbaum, Chad; Carson, Walter P. (2010). "Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity". Ecology 91: 93–105. doi:10.1890/08-1680.1.
  46. Lucas, Richard W.; Salguero-Gómez, Roberto; Cobb, David B.; Waring, Bonnie G.; Anderson, Frank; McShea, William J.; Casper, Brenda B. (2013). "White-tailed deer (Odocoileus virginianus) positively affect the growth of mature northern red oak (Quercus rubra) trees". Ecosphere 4: art84. doi:10.1890/ES13-00036.1.
  47. McShea, W.J. (1997). The Science of Overabundance: Deer Ecology and Population Management. Washington, DC: Smithsonian Institution Press. pp. 201–223, 249–279. ISBN 1-58834-062-7.
  48. Mladenoff, D.J.; Stearns, F. (1993). "Easter hemlock regeneration and deer browsing in the northern great lakes region: a re-examination and model simulation". Conservation Biology 7: 889–900. doi:10.1046/j.1523-1739.1993.740889.x.
  49. Eschtruth, E.C.; J.J. Battles (2008). "Acceleration of exotic plant invasion in a forested ecosystem by a generalist herbivore". Conservation Biology 23: 388–399. doi:10.1111/j.1523-1739.2008.01122.x.
  50. Ditchkoff, S. S.; Lochmiller, Robert L.; Masters, Ronald E.; Hoofer, Steven R.; Van Den Bussche, Ronald A. (2001). "Major-Histocompatibility-Complex-Associated Variation In Secondary Sexual Traits Of White-Tailed Deer (Odocoileus virginianus): Evidence For Good-Genes Advertisement". Evolution 55 (3): 616–625. doi:10.1111/j.0014-3820.2001.tb00794.x. PMID 11327168.
  51. "Forest Foods Deer Eat," Department of Natural Resources website". Department of Natural Resources — State of Michigan. 2008. Retrieved 2011-02-18.
  52. "Mass Audubon". Mass Audubon (Protecting the Nature of Massachusetts). Retrieved 2016-01-20.
  53. Warren, R. J.; et al. (1978). "Reproductive behaviour of captive white-tailed deer". Animal Behaviour 26: 179–183. doi:10.1016/0003-3472(78)90017-9.
  54. Hoofed Mammals of British Columbia - David M. Shackleton - Google Boeken. Books.google.com. Retrieved 2013-09-20.
  55. 1 2 3 Atkeson, Thomas D.; Marchinton, R. Larry; Miller, Karl V. (1988). "Vocalizations of White-tailed Deer". American Midland Naturalist 120 (1): 194–200. doi:10.2307/2425899.
  56. Alexy, Karen J.; Gassett, Jonathan W.; Osborn, David A.; Miller, Karl V. (2001). "White-Tailed Deer Rubs and Scrapes: Spatial, Temporal and Physical Characteristics and Social Role". Wildlife Society Bulletin 29 (3): 873–878.
  57. 1 2 Kile, Terry L.; Marchinton, R. Larry (1977). "White-Tailed Deer Rubs and Scrapes: Spatial, Temporal and Physical Characteristics and Social Role". American Midland Naturalist 97 (2): 257–266. doi:10.2307/2425092.
  58. Richard E. McCabe and Thomas R. McCabe (1984). Of Slings and Arrows: An Historical Retrospective. In Lowell K. Halls (ed.), White-tailed Deer Ecology and Management (Washington: Wildlife Management Institute).
  59. Joel M. Lerner, "Right plants (and fences) can keep deer at bay", The Columbus Dispatch, July 21, 2009. Accessed December 27, 2012.
  60. Mark Johnson, Deer eating away at forests nationwide, The Associated Press, January 18, 2005. Accessed December 27, 2012.
  61. Sinclair, A. R. E. (1997). Carrying capacity and the overabundance of deer: a framework for management.
  62. Mcshea, W. J., Underwood, H. B. , Rappole, J. H. (1997). The Science Of Overabundance: Deer Ecology and Population Management. WA: Smithsonian Institution Press. pp.380-394.
  63. Mattfeld, George F. (1984). Northeastern hardwood and spruce-fir forests. In: Halls, Lowell K., ed. White-tailed deer: ecology and management. Harrisburg, PA: Stackpole Books: 305-330.
  64. Whitney, G.G. (1990). "The history and status of the hemlock-northern hardwood forests of the Allegheny Plateau". Journal of Ecology 78: 443–458. doi:10.2307/2261123.
  65. Côté, SD; Rooney, TP; Tremblay, JP; Dussault, C; Waller, DM (2004). "Ecological impacts of deer overabundance". Annual Review of Ecology, Evolution, and Systematics 35: 113–147. doi:10.1146/annurev.ecolsys.35.021103.105725.
  66. Greenwald, KR; Petit, LJ; Waite, TA (2008). "Indirect effects of a keystone herbivore elevate local animal diversity". The Journal of Wildlife Management 72: 1318–1321. doi:10.2193/2007-491.
  67. Warning to Motorists: Fall Is Peak Season for Deer-Vehicle Collisions, Insurance Information Institute, October 1, 2009
  68. 1 2 Côté, Steeve D.; Rooney, Thomas P.; Tremblay, Jean-Pierre; Dussault, Christian; Waller, Donald M. (2004). "Ecological Impacts of Deer Overabundance". Annual Review of Ecology, Evolution, and Systematics 35 (1): 113–147. doi:10.1146/annurev.ecolsys.35.021103.105725. Retrieved 2015-04-22.
  69. 1 2 "Ecology and management of white-tailed deer in a changing world". Annals of the New York Academy of Sciences 1249: 45–56. doi:10.1111/j.1749-6632.2011.06376.x. Retrieved 2015-04-22.
  70. 1 2 "Targeting mitigation efforts: The role of speed limit and road edge clearance for deer–vehicle collisions". The Journal of Wildlife Management 78: 679–688. doi:10.1002/jwmg.712.
  71. 1 2 "Predicting deer–vehicle collisions in an urban area". linkinghub.elsevier.com 92: 2486–2493. doi:10.1016/j.jenvman.2011.05.010. Retrieved 2015-04-22.
  72. Tackling Ticks That Spread Lyme Disease, Agricultural Research magazine, March 1998

Further reading

External links

Wikimedia Commons has media related to White-tailed deer.
Wikispecies has information related to: White-tailed deer
This article is issued from Wikipedia - version of the Monday, May 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.