Operator space

In functional analysis, a discipline within mathematics, an operator space is a Banach space "given together with an isometric embedding into the space B(H) of all bounded operators on a Hilbert space H.".[1][2] The appropriate morphisms between operator spaces are completely bounded maps.

Equivalent formulations

Equivalently, an operator space is a closed subspace of a C*-algebra.

Category of operator spaces

The category of operator spaces includes operator systems and operator algebras. For operator systems, in addition to an induced matrix norm of an operator space, one also has an induced matrix order. For operator algebras, there is still the additional ring structure.

See also

References

  1. Pisier, Gilles (2003). Introduction to Operator Space Theory. Cambridge University Press. p. 1. ISBN 978-0-521-81165-1. Retrieved 2008-12-18.
  2. Blecher, David P. and Christian Le Merdy (2004). Operator Algebras and Their Modules: An Operator Space Approach. Oxford University Press. First page of Preface. ISBN 978-0-19-852659-9. Retrieved 2008-12-18.


This article is issued from Wikipedia - version of the Saturday, November 29, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.