Order of accuracy
In numerical analysis, order of accuracy quantifies the rate of convergence of a numerical approximation of a differential equation to the exact solution. A numerical solution to a differential equation is said to be th-order accurate if the error, , is proportional to the step-size to the th power;[1]
The size of the error of a first-order accurate approximation is directly proportional to . In big O notation, an th-order accurate numerical method is notated as . Partial differential equations which vary over both time and space are said to be accurate to order in time and to order in space.[2]
References
- ↑ LeVeque, Randall J (2006). Finite Difference Methods for Differential Equations. University of Washington. pp. 3–5.
- ↑ Strikwerda, John C (2004). Finite Difference Schemes and Partial Differential Equations (2 ed.). pp. 62–66. ISBN 978-0-898716-39-9.
This article is issued from Wikipedia - version of the Tuesday, October 07, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.