Gopher (protocol)

The Gopher protocol /ˈɡfər/ is a TCP/IP application layer protocol designed for distributing, searching, and retrieving documents over the Internet. The Gopher protocol was strongly oriented towards a menu-document design and presented an alternative to the World Wide Web in its early stages, but ultimately HTTP became the dominant protocol. The Gopher ecosystem is often regarded as the effective predecessor of the World Wide Web.

The protocol was invented by a team led by Mark P. McCahill at the University of Minnesota. It offers some features not natively supported by the Web and imposes a much stronger hierarchy on information stored on it. Its text menu interface is well-suited to computing environments that rely heavily on remote text-oriented computer terminals, which were still common at the time of its creation in 1991, and the simplicity of its protocol facilitated a wide variety of client implementations. More recent Gopher revisions and graphical clients added support for multimedia. Gopher was preferred by many network administrators for using less network resources than Web services.[1]

Gopher's hierarchical structure provided a platform for the first large-scale electronic library connections.[2] Gopher has been described by some enthusiasts as "faster and more efficient and so much more organised" than today's Web services.[3] The Gopher protocol is still in use by enthusiasts, and although it has been almost entirely supplanted by the Web, a small population of actively maintained servers remains.

Origins

Gopher system was released in mid-1991 by Mark McCahill, Farhad Anklesaria, Paul Lindner, Daniel Torrey, and Bob Alberti of the University of Minnesota[4] in the United States. Its central goals were, as stated in RFC 1436:

Gopher combines document hierarchies with collections of services, including WAIS, the Archie and Veronica search engines, and gateways to other information systems such as FTP and Usenet.

The general interest in Campus-Wide Information Systems (CWISs)[5] in higher education at the time, and the ease with which a Gopher server could be set up to create an instant CWIS with links to other sites' online directories and resources were the factors contributing to Gopher's rapid adoption. By 1992, the standard method of locating someone's e-mail address was to find their organization's CCSO nameserver entry in Gopher, and query the nameserver.[6]

The name was coined by Anklesaria as a play on several meanings of the word "gopher."[7] The University of Minnesota mascot is the gopher,[8] a gofer is an assistant who "goes for" things, and a gopher burrows through the ground to reach a desired location.

Stagnation

The World Wide Web was in its infancy in 1991, and Gopher services quickly became established. By the late 1990s, Gopher had largely ceased expanding. Several factors contributed to Gopher's stagnation:

Gopher remains in active use by its enthusiasts, and there have been attempts to revive the use of Gopher on modern platforms and mobile devices. One such attempt is The Overbite Project, which hosts various browser extensions and modern clients.

As of 2012, there were approximately 160 gopher servers indexed by Veronica-2,[14] reflecting a slow growth from 2007 when there were fewer than 100,[15] although many are infrequently updated. Within these servers Veronica indexed approximately 2.5 million unique selectors. A handful of new servers are set up every year by hobbyists – over 50 have been set up and added to Floodgap's list since 1999.[16] A snapshot of Gopherspace as it was in 2007 was circulated on BitTorrent and is still available.[17] Due to the simplicity of the Gopher protocol, setting up new servers or adding Gopher support to browsers is often done in a tongue in cheek manner, principally on April Fools' Day.[18][19] In November 2014 Veronica indexed 144 gopher servers,[14] reflecting a small drop from 2012, but within these servers Veronica indexed approx. 3 million unique selectors. In March 2016 Veronica indexed 135 gopher servers,[14] within which it indexed approx. 4 million unique selectors.

Native Gopher support

Browser Currently Supported Supported from Supported until Notes
Camino (discontinued) Yes 1.0 current Always uses port 70.
Classilla Yes 9.0 current Hardcoded to port 70 from 9.0–9.2; whitelisted ports from 9.2.1.
cURL Yes 7.21.2 (October 2010) current cURL is a command-line file transfer utility
ELinks Beta[20] Build option
Epiphany No 2.26.3 Disabled after switch to WebKit
Galeon (discontinued) Yes current
Google Chrome No[21] never An extension to automatically forward to Gopher proxies was available, but needs to be rewritten to work with current versions of Chrome.
Internet Explorer No 1 6.0 IE 6 SP1+ and IE with MS02-047 requires registry patch to re-enable.[22] Always uses port 70.
Internet Explorer for Mac (discontinued) No 5.2.3 PowerPC-only
K-Meleon Yes current
Konqueror Plugin kio_gopher
libwww Yes 1.0c (December 1992) current libwww is an API for internet applications
Line Mode Browser Yes 1.1 (January 1992) current
Lynx Yes current Complete support
Mozilla Firefox Addon 0.0 3.6 Always uses port 70. Built-in support dropped from Firefox 4.0 onwards;[23] can be added back with OverbiteFF.
Netscape Navigator (discontinued) Yes ? 9.0.0.6
NetSurf No Under development, based on the cURL fetcher.
OmniWeb Yes 5.9.2 (April 2009) current First WebKit Browser to support Gopher[24][25]
Opera No never Opera 9.0 includes a proxy capability
Pavuk Yes ? current Pavuk is a web mirror (recursive download) software
SeaMonkey Addon 1.0 2.0.14 Always uses port 70. Built-in support dropped from SeaMonkey 2.1 onwards; compatible with OverbiteFF.

Browsers that do not natively support Gopher can still access servers using one of the available Gopher to HTTP gateways.

Gopher support was disabled in Internet Explorer versions 5.x and 6 for Windows in August 2002 by a patch meant to fix a security vulnerability in the browser's Gopher protocol handler to reduce the attack surface which was included in IE6 SP1; however, it can be re-enabled by editing the Windows registry. In Internet Explorer 7, Gopher support was removed on the WinINET level.[26]

Gopher browser plugins

For Mozilla Firefox and SeaMonkey, OverbiteFF extends Gopher browsing and supports Firefox 4. It includes support for accessing Gopher servers not on port 70 using a whitelist and for CSO/ph queries, and allows versions of Firefox and SeaMonkey that do not support Gopher natively to access Gopher servers. Plugins are also available for Konqueror[27] and a proxy-based extension for Google Chrome.[28]

Gopher clients for mobile devices

Some have suggested that the bandwidth-sparing simple interface of Gopher would be a good match for mobile phones and personal digital assistants (PDAs),[29] but so far, mobile adaptations of HTML and XML and other simplified content have proven more popular. The PyGopherd server provides a built-in WML front-end to Gopher sites served with it.

The early 2010s have seen a renewed interest in native Gopher clients for popular smartphones: Overbite, an open source client for Android 1.5+ was released in alpha stage in 2010.[30] PocketGopher was also released in 2010, along with its source code, for several Java ME compatible devices. iGopher was released in 2011 as a proprietary client for iPhone and iPad devices.

Other Gopher clients

Gopher popularity was at its height at a time when there were still many equally competing computer architectures and operating systems. As a result, there are several Gopher clients available for Acorn RISC OS, AmigaOS, Atari MiNT, CMS, DOS, classic Mac OS, MVS, NeXT, OS/2 Warp, most UNIX-like operating systems, VMS, Windows 3.x, and Windows 9x. GopherVR was a client designed for 3D visualization, and there is even a Gopher client in MOO.[31][32] The majority of these clients are hard-coded to work on TCP port 70.

Gopher to HTTP gateways

Users of Web browsers that have incomplete or no support for Gopher can access content on Gopher servers via a server gateway or proxy server that converts Gopher menus into HTML; known proxies are the Floodgap Public Gopher proxy and Gopher Proxy. Similarly, certain server packages such as GN and PyGopherd have built-in Gopher to HTTP interfaces. Squid Proxy software gateways any gopher:// URL to HTTP content, enabling any browser or web agent to access gopher content easily.

Technical details

The conceptualization of knowledge in "Gopher space" or a "cloud" as specific information in a particular file, and the prominence of the FTP, influenced the technology and the resulting functionality of Gopher.

Gopher characteristics

Gopher is designed to function and to appear much like a mountable read-only global network file system (and software, such as gopherfs, is available that can actually mount a Gopher server as a FUSE resource). At a minimum, whatever a person can do with data files on a CD-ROM, they can do on Gopher.

A Gopher system consists of a series of hierarchical hyperlinkable menus. The choice of menu items and titles is controlled by the administrator of the server.

The top level menu of a Gopher server. Selecting the "Fun and Games" menu item...
...takes the user to the "Fun and Games" menu.

Similar to a file on a Web server, a file on a Gopher server can be linked to as a menu item from any other Gopher server. Many servers take advantage of this inter-server linking to provide a directory of other servers that the user can access.

Protocol

The Gopher protocol was first described in RFC 1436. IANA has assigned TCP port 70 to the Gopher protocol.

The protocol is simple to negotiate, making it possible to browse without using a client. A standard gopher session may therefore appear as follows:

/Reference
1CIA World Factbook     /Archives/mirrors/textfiles.com/politics/CIA    gopher.quux.org 70
0Jargon 4.2.0   /Reference/Jargon 4.2.0 gopher.quux.org 70      +
1Online Libraries       /Reference/Online Libraries     gopher.quux.org 70     +
1RFCs: Internet Standards       /Computers/Standards and Specs/RFC      gopher.quux.org 70
1U.S. Gazetteer /Reference/U.S. Gazetteer       gopher.quux.org 70      +
iThis file contains information on United States        fake    (NULL)  0
icities, counties, and geographical areas.  It has      fake    (NULL)  0
ilatitude/longitude, population, land and water area,   fake    (NULL)  0
iand ZIP codes. fake    (NULL)  0
i       fake    (NULL)  0
iTo search for a city, enter the city's name.  To search        fake    (NULL) 0
ifor a county, use the name plus County -- for instance,        fake    (NULL) 0
iDallas County. fake    (NULL)  0

Here, the client has established a TCP connection with the server on port 70, the standard gopher port. The client then sends a string followed by a carriage return followed by a line feed (a "CR + LF" sequence). This is the selector, which identifies the document to be retrieved. If the item selector were an empty line, the default directory would be selected. The server then replies with the requested item and closes the connection. According to the protocol, before the connection is closed, the server should send a full-stop (i.e., a period character) on a line by itself. However, as is the case here, not all servers conform to this part of the protocol and the server may close the connection without returning the final full-stop.

In this example, the item sent back is a gopher menu, a directory consisting of a sequence of lines each of which describes an item that can be retrieved. Most clients will display these as hypertext links, and so allow the user to navigate through gopherspace by following the links.[4]

All lines in a gopher menu are terminated by "CR + LF", and consist of five fields: the item type as the very first character (see below), the display string (i.e., the description text to display), a selector (i.e., a file-system pathname), host name (i.e., the domain name of the server on which the item resides), and port (i.e., the port number used by that server). The item type and display string are joined without a space; the other fields are separated by the tab character.

Because of the simplicity of the Gopher protocol, tools such as netcat make it possible to download Gopher content easily from the command line:

echo jacks/jack.exe | nc gopher.example.org 70 > jack.exe

The protocol is also supported by cURL as of 7.21.2-DEV.[33]

Gopher item types

Item types are described in gopher menus by a single number or (case specific) letter and act as hints to the client to tell it how to handle a specific media type in a menu, analogous to a MIME type. Every client necessarily must understand itemtypes 0 and 1. All known clients understand item types 0 through 9, g, and s, and all but the very oldest also understand file-types h and i.

A list of additional file-type definitions has continued to evolve over time, with some clients supporting them and others not. As such, many servers assign the generic 9 to every binary file, hoping that the client's computer will be able to correctly process the file.

URL links

Historically, to create a link to a Web server, "GET /" was used as a pseudo-selector to simulate an HTTP client request. John Goerzen created an addition[34] to the Gopher protocol, commonly referred to as "URL links", that allows links to any protocol that supports URLs. For example, to create a link to http://gopher.quux.org/, the item type is "h", the display string is the title of the link, the item selector is "URL:http://gopher.quux.org/", and the domain and port are that of the originating Gopher server (so that clients that do not support URL links will query the server and receive an HTML redirection page).

Related technology

The master Gopherspace search engine is Veronica. Veronica offers a keyword search of all the public Internet Gopher server menu titles. A Veronica search produces a menu of Gopher items, each of which is a direct pointer to a Gopher data source. Individual Gopher servers may also use localized search engines specific to their content such as Jughead and Jugtail.

GopherVR is a 3D virtual reality variant of the original Gopher system.

Gopher server software

Because the protocol is trivial to implement in a basic fashion, there are many server packages still available, and some are still maintained.

Server Developed By Latest version License Written in Notes
Aftershock Rob Linwood 1.0.1 MIT Java 1.0.1 released 2004/04/22
Bucktooth Cameron Kaiser 0.2.9 Floodgap Free Software License Perl 0.2.9 released 2011/05/01
geomyid Quinn Evans 0.0.1 2-clause BSD Common Lisp 0.0.1 released 2015/08/10
Unportable: sbcl/FreeBSD
Geomyidae Christoph Lohmann MIT C 0.26.3 released 2013/04/13
GN GPL
GoFish Sean MacLennan 1.2 GPLv2 C 1.2 released 2010/10/08
Gophernicus Kim Holviala 1.8.1 BSD C 1.8.1 released 2015/10/16
gophrier Guillaume Duhamel 0.2.3 GPL C 0.2.3 released 2012/03/29
GOPHSERV 0.5 GPLv3 FreeBASIC 0.5 released 2012/12/30
Gopher Cannon Freeware .NET 3.5 (Win32/Win64) 1.07 released 2013/07/08
Goscher Aaron W. Hsu 8.0 ISC Scheme
mgod Mate Nagy 1.0 GPLv3 C 1.0 released 2008/08/08
Motsognir Mateusz Viste 1.0.8.1 GPLv3 C 1.0.8.1 released on 2016/04/22
PyGopherd John Goerzen 2.0.18.3 GPL Python 2.0.18.3 released 2008/08/09
PyGS Python

See also

  • Veronica – the search engine system for the Gopher protocol, an acronym for "Very Easy Rodent-Oriented Net-wide Index to Computer Archives"
  • Gopher+ – early proposed extensions to the Gopher protocol
  • GopherVR
  • Jugtail – an alternative search engine system for the Gopher protocol. Jugtail was formerly known as Jughead.
  • SDF Public Access Unix System – a non-profit organization which provides free Gopher hosting
  • Phlog – The gopher version of a weblog
  • Wide area information server – a search engine whose popularity was contemporary with Gopher

References

  1. "How Moore's Law saved us from the Gopher web". 12 March 2009. Retrieved 20 September 2011.
  2. Suzan D. McGinnis (2001). Electronic collection management. Routledge. pp. 69–72. ISBN 0-7890-1309-6.
  3. Tomi T. Ahonen (2002). m-Profits: Making Money from 3G Services. Wiley. pp. 33–34. ISBN 0-470-84775-1.
  4. 1 2 December, John; Randall, Neil (1994). The World Wide Web unleashed. Sams Publishing. p. 20. ISBN 1-57521-040-1.
  5. "Google Groups archive of bit.listserv.cwis-l discussion". Google. Retrieved 27 July 2011.
  6. "Google Groups archive of comp.infosystems.gopher discussion". Google. Retrieved 27 July 2011.
  7. Mark McCahill, Farhad Anklesaria. "Smart Solutions: Internet Gopher" (Flash). Minneapolis: University of Minnesota Media Mill. Event occurs at 2:40. McCahill credits Anklesaria with naming Gopher
  8. "Gophersports.com – Official Web Site of University of Minnesota Athletics". Retrieved 17 August 2010.
  9. "Subject: University of Minnesota Gopher software licensing policy". Funet.fi. Retrieved 2015-08-12.
  10. JQ Johnson (25 February 1993). "Message from discussion gopher licensing". Google. Retrieved 27 July 2011.
  11. Joel Rubin (3 March 1999). "CW from the VOA server page – rec.radio.shortwave". Google. Retrieved 27 July 2011.
  12. Johan Söderberg (2007). Hacking Capitalism: The Free and Open Source Software Movement. Routledge. p. 25. ISBN 0-415-95543-2.
  13. "Google Groups". Groups.google.com. Retrieved 2015-08-12.
  14. 1 2 3
  15. Kaiser, Cameron (19 March 2007). "Down the Gopher Hole". TidBITS. Retrieved 23 March 2007.
  16. Archived August 4, 2011, at the Wayback Machine.
  17. "Download A Piece of Internet History". The Changelog. 28 April 2010. Retrieved 27 July 2011.
  18. "Release Notes – OmniWeb 5 – Products". The Omni Group. Retrieved 27 July 2011. OmniWeb 5.9.2 Released April 01 2009: Implemented ground-breaking support for the revolutionary Gopher protocol—a first for WebKit-based browsers! For a list of Gopher servers, see the Floodgap list. Enjoy!
  19. Archived August 4, 2011, at the Wayback Machine.
  20. Fonseca, Jonas (24 December 2004). "elinks-users ANNOUNCE ELinks-0.10.0 (Thelma)". Linux from scratch. Retrieved 22 May 2010.
  21. hotaru.firefly; et al. (2 May 2009). "Issue 11345: gopher protocol doesn't work". Google. Retrieved 25 July 2011.
  22. "Microsoft Security Bulletin MS02-047". Microsoft. 28 February 2003. Retrieved 23 March 2007.
  23. "Bug 388195 – Remove gopher protocol support for Firefox". Retrieved 15 June 2010.
  24. Sharps, Linda (1 April 2009). "OmniWeb 5.9.2 now includes Gopher support". OmniGroup. Retrieved 3 April 2009.
  25. "A comprehensive list of changes for each version of OmniWeb". OmniGroup. 1 April 2009. Retrieved 3 April 2009.
  26. "Release Notes for Internet Explorer 7". Microsoft. 2006. Retrieved 23 March 2007.
  27. "kio_gopher – Gopher kioslave". Retrieved 21 August 2010.
  28. "The Overbite Project". Floodgap. Retrieved 25 July 2010.
  29. Lore Sjöberg (12 April 2004). "Gopher: Underground Technology". Wired News. Retrieved 27 July 2011.
  30. Paul, Ryan (6 July 2010). "Overbite Project brings Gopher protocol to Android". Ars Technica. Retrieved 25 July 2010.
  31. Riddle, Prentiss (1993-04-13). "GopherCon '93: Internet Gopher Workshop and Internet Gopher Conference". PrentissRiddle.com. Retrieved 2008-05-20.
  32. Masinter, Larry (1993). "Collaborative information retrieval: Gopher from MOO". Retrieved 2015-05-16.
  33. "Curl: Re: Gopher patches for cURL (includes test suite)". Retrieved 25 August 2010.
  34. "Gopher: gopher.2002-02". Gopher.quux.org. Retrieved 2015-08-12.

External links

This article is issued from Wikipedia - version of the Sunday, May 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.