Oxygen saturation (medicine)

For oxygen saturation in general, see Oxygen saturation.
Blood circulation: Red = oxygenated (arteries), Blue = deoxygenated (veins)

Oxygen saturation is a term referring to the fraction of oxygen-saturated hemoglobin relative to total hemoglobin (unsaturated + saturated) in the blood. The human body requires and regulates a very precise and specific balance of oxygen in the blood. Normal blood oxygen levels in humans are considered 95-100 percent. If the level is below 90 percent, it is considered low resulting in hypoxemia.[1] Blood oxygen levels below 80 percent may compromise organ function, such as the brain and heart, and should be promptly addressed. Continued low oxygen levels may lead to respiratory or cardiac arrest. Oxygen therapy may be used to assist in raising blood oxygen levels. Oxygenation occurs when oxygen molecules (O
2
) enter the tissues of the body. For example, blood is oxygenated in the lungs, where oxygen molecules travel from the air and into the blood. Oxygenation is commonly used to refer to medical oxygen saturation.

Definition

Haemoglobin saturation curve.

In medicine, oxygen saturation (SO2), commonly referred to as "sats," measures the percentage of hemoglobin binding sites in the bloodstream occupied by oxygen.[2] At low partial pressures of oxygen, most hemoglobin is deoxygenated. At around 90% (the value varies according to the clinical context) oxygen saturation increases according to an oxygen-hemoglobin dissociation curve and approaches 100% at partial oxygen pressures of >10 kPa. A pulse oximeter relies on the light absorption characteristics of saturated hemoglobin to give an indication of oxygen saturation.

Physiology

The body maintains a stable level of oxygen saturation for the most part by chemical processes of aerobic metabolism associated with breathing. Using the respiratory system, red blood cells, specifically the hemoglobin, gather oxygen in the lungs and distribute it to the rest of the body. The needs of the body's blood oxygen may fluctuate such as during exercise when more oxygen is required [3] or when living at higher altitudes. A blood cell is said to be "saturated" when carrying a normal amount of oxygen.[4] Both too high and too low levels can have adverse effects on the body.

Measurement

An SaO2 (arterial oxygen saturation) value below 90% causes hypoxemia (which can also be caused by anemia). Hypoxemia due to low SaO is indicated by cyanosis. Oxygen saturation can be measured in different tissues:

S_\mathrm{p}O_\mathrm{2}=\frac{HbO_\mathrm{2}}{HbO_\mathrm{2}+Hb}

Pulse oximetry

Main article: Pulse oximetry
Example pulse oximeter

Pulse oximetry is a method used to measure the concentration of oxygen in the blood. A small device that clips to the body (typically a finger but may be other areas), called a pulse oximeter, uses infrared light to estimate the amount of oxygen in the blood. The clip attaches to a reading meter by a wire to collect the data. Oxygen levels may also be checked through an arterial blood gas test (ABG), where blood taken from an artery is analysed for oxygen level, carbon dioxide level and acidity.[5] Oxygen saturation taken with a pulse oximeter is often designated SpO2.[6]

Medical significance

Effects of decreased oxygen saturation[7]
SaO2 Effect
85% and above No evidence of impairment
65% and less Impaired mental function on average
55% and less Loss of consciousness on average

Healthy individuals at sea level usually exhibit oxygen saturation values between 96% and 99%, and should be above 94%. At 1600 meters altitude (about one mile high) oxygen saturation should be above 92%.[8]

An SaO2 (arterial oxygen saturation) value below 90% causes hypoxemia (which can also be caused by anemia). Hypoxemia due to low SaO2 is indicated by cyanosis, but oxygen saturation does not directly reflect tissue oxygenation. The affinity of hemoglobin to oxygen may impair or enhance oxygen release at the tissue level. Oxygen is more readily released to the tissues (i.e., hemoglobin has a lower affinity for oxygen) when pH is decreased, body temperature is increased, arterial partial pressure of carbon dioxide (PaCO2) is increased, and 2,3-DPG levels (a byproduct of glucose metabolism also found in stored blood products) are increased. When the hemoglobin has greater affinity for oxygen, less is available to the tissues. Conditions such as increased pH, decreased temperature, decreased PaCO2, and decreased 2,3-DPG will increase oxygen binding to the hemoglobin and limit its release to the tissue.[9]

References

  1. "Hypoxemia (low blood oxygen)". Mayo Clinic. mayoclinic.com. Retrieved 6 June 2013.
  2. Kenneth D. McClatchey (2002). Clinical Laboratory Medicine. Philadelphia: Lippincott Williams & Wilkins. p. 370.
  3. "Understanding Blood Oxygen Levels at Rest". fitday.com. fitday.com. Retrieved 6 June 2013.
  4. Elllison, Bronwyn. "NORMAL RANGE OF BLOOD OXYGEN LEVEL". Livestrong.com. Livestrong.com. Retrieved 6 June 2013.
  5. "Your Oxygen Level" (PDF). The Ohio State University Wexner Medical Center. Retrieved 6 June 2013.
  6. "SPO2". TheFreeDictionary.com. 1998–2008. Retrieved 2014-01-28.
  7. Oxymoron: Our Love-Hate Relationship with Oxygen, By Mike McEvoy at Albany Medical College, New York. 11/14/2012
  8. "Normal oxygen level". National Jewish Health. MedHelp. Feb 23, 2009. Retrieved 2014-01-28.
  9. Schutz, Oxygen Saturation Monitoring by Pulse Oximetry, 2001

External links

This article is issued from Wikipedia - version of the Monday, April 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.