Pöschl–Teller potential

In mathematical physics, a PöschlTeller potential, named after the physicists Herta Pöschl[1] (credited as G. Pöschl) and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.

Definition

In its symmetric form is explicitly given by[2]

Symmetric PöschlTeller potential: -\frac{\lambda(\lambda +1)}{2} \operatorname{sech}^2(x). It shows the eigenvalues for μ=1, 2, 3, 4, 5, 6.

V(x) =-\frac{\lambda(\lambda+1)}{2}\mathrm{sech}^2(x)

and the solutions of the time-independent Schrödinger equation


-\frac{1}{2}\psi''(x)+ V(x)\psi(x)=E\psi(x)

with this potential can be found by virtue of the substitution u=\mathrm{tanh(x)}, which yields


\left[(1-u^2)\psi'(u)\right]'+\lambda(\lambda+1)\psi(u)+\frac{2E}{1-u^2}\psi(u)=0
.

Thus the solutions \psi(u) are just the Legendre functions P_\lambda^\mu(\tanh(x)) with E=\frac{-\mu^2}{2}, and \lambda=1, 2, 3\cdots, \mu=1, 2, \cdots, \lambda-1, \lambda. Moreover, eigenvalues and scattering data can be explicitly computed.[3] In the special case of integer \lambda, the potential is reflectionless and such potentials also arise as the N-soliton solutions of the Korteweg-de Vries equation.[4]

The more general form of the potential is given by[2]


V(x) =-\frac{\lambda(\lambda+1)}{2}\mathrm{sech}^2(x) - \frac{\nu(\nu+1)}{2}\mathrm{csch}^2(x)  .

See also

References list

  1. "Edward Teller Biographical Memoir." by Stephen B. Libby and Andrew M. Sessler, 2009 (published in Edward Teller Centennial Symposium: modern physics and the scientific legacy of Edward Teller, World Scientific, 2010.
  2. 1 2 Pöschl, G.; Teller, E. (1933). "Bemerkungen zur Quantenmechanik des anharmonischen Oszillators". Zeitschrift für Physik 83 (3–4): 143–151. doi:10.1007/BF01331132.
  3. Siegfried Flügge Practical Quantum Mechanics (Springer, 1998)
  4. Lekner, John (2007). "Reflectionless eigenstates of the sech2 potential". American Journal of Physics 875 (12): 1151–1157. doi:10.1119/1.2787015.

External links

This article is issued from Wikipedia - version of the Sunday, January 03, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.