PIGB
Phosphatidylinositol glycan anchor biosynthesis, class B | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||
Symbols | PIGB ; GPI-MT-III; PIG-B | ||||||||||||
External IDs | OMIM: 604122 MGI: 1891825 HomoloGene: 3570 GeneCards: PIGB Gene | ||||||||||||
| |||||||||||||
RNA expression pattern | |||||||||||||
More reference expression data | |||||||||||||
Orthologs | |||||||||||||
Species | Human | Mouse | |||||||||||
Entrez | 9488 | 55981 | |||||||||||
Ensembl | ENSG00000069943 | ENSMUSG00000079469 | |||||||||||
UniProt | Q92521 | Q9JJQ0 | |||||||||||
RefSeq (mRNA) | NM_004855 | NM_018889 | |||||||||||
RefSeq (protein) | NP_004846 | NP_061377 | |||||||||||
Location (UCSC) |
Chr 15: 55.32 – 55.36 Mb |
Chr 9: 73.01 – 73.04 Mb | |||||||||||
PubMed search | |||||||||||||
GPI mannosyltransferase 3 is an enzyme that in humans is encoded by the PIGB gene.[1][2]
This gene encodes a transmembrane protein that is located in the endoplasmic reticulum and is involved in GPI-anchor biosynthesis. The glycosylphosphatidylinositol (GPI) anchor is a glycolipid found on many blood cells and serves to anchor proteins to the cell surface. This gene is thought to encode a member of a family of dolichol-phosphate-mannose (Dol-P-Man) dependent mannosyltransferases.[2]
References
- ↑ Takahashi M, Inoue N, Ohishi K, Maeda Y, Nakamura N, Endo Y, Fujita T, Takeda J, Kinoshita T (Dec 1996). "PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor". EMBO J 15 (16): 4254–61. PMC 452151. PMID 8861954.
- 1 2 "Entrez Gene: PIGB phosphatidylinositol glycan anchor biosynthesis, class B".
Further reading
- Mohney RP, Knez JJ, Ravi L, et al. (1994). "Glycoinositol phospholipid anchor-defective K562 mutants with biochemical lesions distinct from those in Thy-1- murine lymphoma mutants.". J. Biol. Chem. 269 (9): 6536–42. PMID 7907094.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Anikster Y, Huizing M, Anderson PD, et al. (2002). "Evidence that Griscelli syndrome with neurological involvement is caused by mutations in RAB27A, not MYO5A". Am. J. Hum. Genet. 71 (2): 407–14. doi:10.1086/341606. PMC 379173. PMID 12058346.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.
This article is issued from Wikipedia - version of the Wednesday, September 02, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.