Probabilistic latent semantic analysis

Probabilistic latent semantic analysis (PLSA), also known as probabilistic latent semantic indexing (PLSI, especially in information retrieval circles) is a statistical technique for the analysis of two-mode and co-occurrence data. In effect, one can derive a low-dimensional representation of the observed variables in terms of their affinity to certain hidden variables, just as in latent semantic analysis, from which PLSA evolved.

Compared to standard latent semantic analysis which stems from linear algebra and downsizes the occurrence tables (usually via a singular value decomposition), probabilistic latent semantic analysis is based on a mixture decomposition derived from a latent class model.

Model

Plate notation representing the PLSA model ("asymmetric" formulation). d is the document index variable, c is a word's topic drawn from the document's topic distribution, P(c|d), and w is a word drawn from the word distribution of this word's topic, P(w|c) . The d and w are observable variables, the topic c is a latent variable.

Considering observations in the form of co-occurrences (w,d) of words and documents, PLSA models the probability of each co-occurrence as a mixture of conditionally independent multinomial distributions:

P(w,d) = \sum_c P(c) P(d|c) P(w|c) = P(d) \sum_c P(c|d) P(w|c)

with 'c' being the words' topic. The first formulation is the symmetric formulation, where w and d are both generated from the latent class c in similar ways (using the conditional probabilities P(d|c) and P(w|c)), whereas the second formulation is the asymmetric formulation, where, for each document d, a latent class is chosen conditionally to the document according to P(c|d), and a word is then generated from that class according to P(w|c). Although we have used words and documents in this example, the co-occurrence of any couple of discrete variables may be modelled in exactly the same way.

So, the number of parameters is equal to cd + wc. The number of parameters grows linearly with the number of documents. In addition, although PLSA is a generative model of the documents in the collection it is estimated on, it is not a generative model of new documents.

Their parameters are learned using the EM algorithm.

Application

PLSA may be used in a discriminative setting, via Fisher kernels.[1]

PLSA has applications in information retrieval and filtering, natural language processing, machine learning from text, and related areas.

It is reported that the aspect model used in the probabilistic latent semantic analysis has severe overfitting problems.[2]

In 2012, pLSA has also been used in the bioinformatics context, for prediction of Gene Ontology biomolecular annotations.[3]

Extensions

History

This is an example of a latent class model (see references therein), and it is related [6] to non-negative matrix factorization. The present terminology was coined in 1999 by Thomas Hofmann.[7]

References and notes

See also

External links

This article is issued from Wikipedia - version of the Thursday, March 17, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.