Palatini identity
In general relativity and tensor calculus, the Palatini identity is:
where denotes the variation of Christoffel symbols[1] and semicolon ";" indicates covariant differentiation.
Proof can be found in the entry Einstein–Hilbert action.
See also
- Einstein–Hilbert action
- Palatini variation
- Ricci calculus
- Tensor calculus
- Christoffel symbols
- Riemann curvature tensor
Notes
- ↑ Christoffel, E.B. (1869), "Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades", Jour. für die reine und angewandte Mathematik, B. 70: 46–70
References
- A. Palatini (1919) Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rend. Circ. Mat. Palermo 43, 203-212 [English translation by R.Hojman and C. Mukku in P.G. Bergmann and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980)]
- M. Tsamparlis, On the Palatini method of Variation, J. Math. Phys. 19, 555 (1977).
This article is issued from Wikipedia - version of the Tuesday, November 10, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.