Palatini identity

In general relativity and tensor calculus, the Palatini identity is:

\delta R_{\mu\nu}{} = (\delta\Gamma^{\lambda}{}_{\mu\nu})_{;\lambda} - (\delta\Gamma^{\lambda}{}_{\mu\lambda})_{;\nu}

where \delta\Gamma^{\lambda}{}_{\mu\nu} denotes the variation of Christoffel symbols[1] and semicolon ";" indicates covariant differentiation.

Proof can be found in the entry Einstein–Hilbert action.

See also

Notes

  1. Christoffel, E.B. (1869), "Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades", Jour. für die reine und angewandte Mathematik, B. 70: 46–70

References

This article is issued from Wikipedia - version of the Tuesday, November 10, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.