Paley–Zygmund inequality
In mathematics, the Paley–Zygmund inequality bounds the probability that a positive random variable is small, in terms of its mean and variance (i.e., its first two moments). The inequality was proved by Raymond Paley and Antoni Zygmund.
Theorem: If Z ≥ 0 is a random variable with
finite variance, and if
, then
Proof: First,
The first addend is at most
, while the second is at most
by the Cauchy–Schwarz inequality. The desired inequality then follows. ∎
Related inequalities
The Paley–Zygmund inequality can be written as
This can be improved. By the Cauchy–Schwarz inequality,
which, after rearranging, implies that
This inequality is sharp; equality is achieved if Z almost surely equals a positive constant, for example.
References
- R. E. A. C. Paley and A. Zygmund, "On some series of functions, (3)," Proc. Camb. Phil. Soc. 28 (1932), 190-205, (cf. Lemma 19 page 192).
- R. E. A. C. Paley and A. Zygmund, A note on analytic functions in the unit circle, Proc. Camb. Phil. Soc. 28 (1932), 266–272
This article is issued from Wikipedia - version of the Wednesday, March 23, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
![\operatorname{P}( Z > \theta\operatorname{E}[Z] )
\ge (1-\theta)^2 \frac{\operatorname{E}[Z]^2}{\operatorname{E}[Z^2]}.](../I/m/44440dbe206bafe101f1a72d5aed4d2f.png)
![\operatorname{E}[Z] = \operatorname{E}[ Z \, \mathbf{1}_{\{ Z \le \theta \operatorname{E}[Z] \}}] + \operatorname{E}[ Z \, \mathbf{1}_{\{ Z > \theta \operatorname{E}[Z] \}} ].](../I/m/96f86770bfa94b103f5d45bde0cb3985.png)
![\operatorname{P}( Z > \theta \operatorname{E}[Z] )
\ge \frac{(1-\theta)^2 \, \operatorname{E}[Z]^2}{\operatorname{Var} Z + \operatorname{E}[Z]^2}.](../I/m/59e61018de63322943e6a7e489985ccc.png)
![\operatorname{E}[Z - \theta \operatorname{E}[Z]]
\le \operatorname{E}[ (Z - \theta \operatorname{E}[Z]) \mathbf{1}_{\{ Z > \theta \operatorname{E}[Z] \}} ]
\le \operatorname{E}[ (Z - \theta \operatorname{E}[Z])^2 ]^{1/2} \operatorname{P}( Z > \theta \operatorname{E}[Z] )^{1/2}](../I/m/e4d0fdefeb67fb5ae3c0a7034b945713.png)
![\operatorname{P}(Z > \theta \operatorname{E}[Z])
\ge \frac{(1-\theta)^2 \operatorname{E}[Z]^2}{\operatorname{E}[( Z - \theta \operatorname{E}[Z] )^2]}
= \frac{(1-\theta)^2 \operatorname{E}[Z]^2}{\operatorname{Var} Z + (1-\theta)^2 \operatorname{E}[Z]^2}.](../I/m/54a4808f33be2ac1acb6bfded4ee416e.png)