Paraboloidal coordinates

Paraboloidal coordinates are a three-dimensional orthogonal coordinate system (\lambda, \mu, \nu) that generalizes the two-dimensional parabolic coordinate system. Similar to the related ellipsoidal coordinates, the paraboloidal coordinate system has orthogonal quadratic coordinate surfaces that are not produced by rotating or projecting any two-dimensional orthogonal coordinate system.

Coordinate surfaces of the three-dimensional paraboloidal coordinates.

Basic formulae

The Cartesian coordinates (x, y, z) can be produced from the ellipsoidal coordinates ( \lambda, \mu, \nu ) by the equations


x^{2} = \frac{\left( A - \lambda \right) \left( A - \mu \right) \left( A - \nu \right)}{B - A}

y^{2} = \frac{\left( B - \lambda \right) \left( B - \mu \right) \left( B - \nu \right)}{A - B}

z = 
\frac{1}{2} \left( A + B - \lambda - \mu -\nu \right)

where the following limits apply to the coordinates


\lambda < B < \mu < A < \nu

Consequently, surfaces of constant \lambda are elliptic paraboloids


\frac{x^{2}}{\lambda - A} +  \frac{y^{2}}{\lambda - B}  = 2z + \lambda

and surfaces of constant \nu are likewise


\frac{x^{2}}{\nu - A} +  \frac{y^{2}}{\nu - B}  = 2z + \nu

whereas surfaces of constant \mu are hyperbolic paraboloids


\frac{x^{2}}{\mu - A} +  \frac{y^{2}}{\mu - B} = 2z + \mu

Scale factors

The scale factors for the paraboloidal coordinates (\lambda, \mu, \nu ) are


h_{\lambda} = \frac{1}{2} \sqrt{\frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right)}{ \left( A - \lambda \right) \left( B - \lambda \right)}}

h_{\mu} = \frac{1}{2} \sqrt{\frac{\left( \nu - \mu \right) \left( \lambda - \mu \right)}{ \left( A - \mu \right) \left( B - \mu \right)}}

h_{\nu} = \frac{1}{2} \sqrt{\frac{\left( \lambda - \nu \right) \left( \mu - \nu \right)}{ \left( A - \nu \right) \left( B - \nu \right)}}

Hence, the infinitesimal volume element equals


dV = \frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right) \left( \nu - \mu\right)}{8\sqrt{\left( A - \lambda \right) \left( B - \lambda \right) \left( A - \mu \right) \left( \mu - B \right) \left( \nu - A \right) \left( \nu  - B \right) }} \  d\lambda d\mu d\nu

Differential operators such as \nabla \cdot \mathbf{F} and \nabla \times \mathbf{F} can be expressed in the coordinates (\lambda, \mu, \nu) by substituting the scale factors into the general formulae found in orthogonal coordinates.

References

    Bibliography

    External links

    This article is issued from Wikipedia - version of the Sunday, May 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.