Partition regularity
In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets.
Given a set  , a collection of subsets
, a collection of subsets  is  called partition regular if every set A in the collection has the property that, no matter how A is partitioned into finitely many subsets, at least one of the subsets will also belong to the collection. That is,
for any
 is  called partition regular if every set A in the collection has the property that, no matter how A is partitioned into finitely many subsets, at least one of the subsets will also belong to the collection. That is,
for any  , and any finite partition
, and any finite partition  , there exists an i ≤ n, such that
, there exists an i ≤ n, such that  belongs to
 belongs to  . Ramsey theory is sometimes characterized as the  study of which collections
. Ramsey theory is sometimes characterized as the  study of which collections  are partition regular.
 are partition regular.
Examples
- the collection of all infinite subsets of an infinite set X is a prototypical example. In this case partition regularity asserts that every finite partition of an infinite set has an infinite cell (i.e. the infinite pigeonhole principle.)
-  sets with positive upper density in  : the upper density : the upper density of of is defined as is defined as 
-  For any ultrafilter  on a set on a set , , is partition regular. If is partition regular. If , then for exactly one , then for exactly one is is . .
-  sets of recurrence: a set R of integers is called a set of recurrence if for any measure preserving transformation  of the probability space (Ω, β, μ) and of the probability space (Ω, β, μ) and of positive measure there is a nonzero of positive measure there is a nonzero so that so that . .
- Call a subset of natural numbers a.p.-rich if it contains arbitrarily long arithmetic progressions. Then the collection of a.p.-rich subsets is partition regular (Van der Waerden, 1927).
-  Let ![[A]^n](../I/m/5fd0b09443f828c8ca7809689b6cc7e3.png) be the set of all n-subsets of be the set of all n-subsets of . Let . Let![\mathbb{S}^n = \bigcup^{ }_{A \subset \mathbb{N}} [A]^n](../I/m/931667664bcd7cc30d862d5d26f739ae.png) . For each n, . For each n, is partition regular. (Ramsey, 1930). is partition regular. (Ramsey, 1930).
-  For each infinite cardinal  , the collection of stationary sets of , the collection of stationary sets of is partition regular. More is true: if is partition regular. More is true: if is stationary and is stationary and for some for some , then some , then some is stationary. is stationary.
-  the collection of  -sets: -sets: is a is a -set if -set if contains the set of differences contains the set of differences for some sequence for some sequence . .
-  the set of barriers on  : call a collection : call a collection of finite subsets of of finite subsets of a barrier if: a barrier if:-   and and
-  for all infinite  , there is some , there is some such that the elements of X are the smallest elements of I; i.e. such that the elements of X are the smallest elements of I; i.e. and and . .
 
-  
-  This generalizes Ramsey's theorem, as each ![[A]^n](../I/m/5fd0b09443f828c8ca7809689b6cc7e3.png) is a barrier. (Nash-Williams, 1965) is a barrier. (Nash-Williams, 1965)
- finite products of infinite trees (Halpern–Läuchli, 1966)
- piecewise syndetic sets (Brown, 1968)
- Call a subset of natural numbers i.p.-rich if it contains arbitrarily large finite sets together with all their finite sums. Then the collection of i.p.-rich subsets is partition regular (Folkman–Rado–Sanders, 1968).
- (m, p, c)-sets (Deuber, 1973)
- IP sets (Hindman, 1974, see also Hindman, Strauss, 1998)
- MTk sets for each k, i.e. k-tuples of finite sums (Milliken–Taylor, 1975)
-  central sets; i.e. the members of any minimal idempotent in  , the Stone–Čech compactification of the integers. (Furstenberg, 1981, see also Hindman, Strauss, 1998) , the Stone–Čech compactification of the integers. (Furstenberg, 1981, see also Hindman, Strauss, 1998)
References
- Vitaly Bergelson, N. Hindman Partition regular structures contained in large sets are abundant J. Comb. Theory (Series A) 93 (2001), 18–36.
- T. Brown, An interesting combinatorial method in the theory of locally finite semigroups, Pacific J. Math. 36, no. 2 (1971), 285–289.
- W. Deuber, Mathematische Zeitschrift 133, (1973) 109–123
- N. Hindman, Finite sums from sequences within cells of a partition of N, J. Combinatorial Theory (Series A) 17 (1974) 1–11.
- C.St.J.A. Nash-Williams, On well-quasi-ordering transfinite sequences, Proc. Camb. Phil. Soc. 61 (1965), 33–39.
- N. Hindman, D. Strauss, Algebra in the Stone–Čech compactification, De Gruyter, 1998
- J.Sanders, A Generalization of Schur's Theorem, Doctoral Dissertation, Yale University, 1968.
This article is issued from Wikipedia - version of the Saturday, March 19, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.